Subject Areas : Journal of Optoelectronical Nanostructures
Mohammad Nasiri fard 1 , Somaieh Ahmadi 2 , leila eslami 3
1 - Department of Physics, Imam Khomeini International University, Qazvin 3414896818, Iran.
2 - Department of Physics, Imam Khomeini International University, Qazvin 3414896818, Iran
3 - Plasma Physics Research Center, Science and Research Branch, Islamic Azad University
Keywords:
Abstract :
[1] M. Jafari, Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method, Journal of Optoelectronical Nanostructures, 1, (summer 2016) 57-68.
[2] H. Faezinia1, M. Zavvari, Quantum modeling of light absorption in graphene based photo-transistors, Journal of Optoelectronical Nanostructures, 2, (winter 2017) 9-20.
[3] S. Fotoohi, S. Haji-Nasiri, Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon, Journal of Optoelectronical Nanostructures, 4, (Autumn 2019) 15-38.
[4] M. Hasani, R. Chege, Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field, Journal of Optoelectronical Nanostructures, 5, (Spring 2020) 49-64.
[5] S. J. Mousavi, Ab-initio LSDA Study of the Electronic States of Nano Scale Layered LaCoO3/Mn Compound: Hubbard Parameter Optimization, Journal of Optoelectronical Nanostructures, 4, (Autumn 2020) 111-122.
[6] Z.-Q. Fan, F. Xie, X.-W. Jiang, Z. Wei, and S.-S. Li, Giant decreasing of spin current in a single molecular junction with twisted zigzag graphene nanoribbon electrodes, Carbon, 110, (December 2016) 200-206.
[7] W. Lu, V. Meunier, and J. Bernholc, Nonequilibrium Quantum Transport Properties of Organic Molecules on Silicon, Physical Review Letters, 95, (November 2005) 206805.
[8] F. Flores, J. Ortega, and H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory, Physical Chemistry Chemical Physics, 11, (October 2009) 8658.
[9] J. Liu and R. Yang, Length-dependent thermal conductivity of single extended polymer chains, Physical Review B, 86, (September 2012) 104307.
[10] X. J. Liu and Z. An, Structural change-induced negative differential resistance in polythiophene, Organic Electronics, 12, (August 2011) 1352-1357.
[11] Q. Chen, X. Wang, F. Chen, N. Zhang, and M. Ma, Extremely strong and tough polythiophene composite for flexible electronics, Chemical Engineering Journal, 368, (July 2019) 933-940.
[12] D. Djukic and J. M. van Ruitenbeek, Shot Noise Measurements on a Single Molecule, Nano Letters, 6, (March 2006) 789-793.
[13] A. Mu, O. Shein-Lumbroso, O. Tal, and D. Segal, Origin of the Anomalous Electronic Shot Noise in Atomic-Scale Junctions, The Journal of Physical Chemistry C, 123, (September 2019) 23853-23862.
[14] J. Li, Z. H. Zhang, J. J. Zhang, W. Tian, Z.Q. Fan, X.Q. Deng and G. P. Tang, Spin polarization effects of zigzag-edge graphene electrodes on the rectifying performance of the D-σ-A molecular diode, Organic Electronics, 14, (March 2013) 958-965.
[15] N. Liu, J. B. Liu, and K. L. Yao, Spin transport properties of single molecule magnet Mn(dmit)2 devices with phosphorene electrodes, Journal of Magnetism and Magnetic Material, 498, (March 2020) 166145.
[16] D. Li, R. Banerjee, S. Mondal, I. Maliyov, M. Romanova, Y. J. Dappe, and A. Smogunov, Symmetry aspects of spin filtering in molecular junctions: Hybridization and quantum interference effects, Physical Review B, 99, (March 2019) 115403.
[17] S. Chakraborty and S. K. Maiti, Possible routes for efficient thermo-electric energy conversion in a molecular junction, ChemPhysChem, 20, (February 2019) 848-860.
[18] X. Yang, F. Tan, Y. Dong, H. Yu, and Y. Liu, Transition metal-containing molecular devices: controllable single-spin negative differential thermoelectric resistance effects under gate voltages, Physical Chemistry Chemical Physics, 21, (March 2019) 5243.
[19] M. Galperin, M. A. Ratner, and A. Nitzan, Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model, Nano Letters, 5, (December 2005) 125-130.
[20] W. Liu, S. Cai, and X. Deng, Rectifying Performance and Negative Differential Resistance Behavior of Doping Atoms Effect in Polyphenyls, Journal of Electronic Materials, 44, (December 2015) 667-674.
[21] L. Gu and H.-H. Fu, Current-induced forces: a new mechanism to induce negative differential resistance and current-switching effect in molecular junctions, Nanotechnology, 26, (November 2015) 485703.
[22] L. Esaki, New Phenomenon in Narrow Germanium p-n Junctions, Physical Review, 109, (January 1958) 603.
[23] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device, Science, 286, (November 1999) 1550-1552.
[24] R. A. Kiehl, J. D. Le, P. Candra, R. C. Hoye, and T. R. Hoye, Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions, Applied Physics Letters, 88, (September 2006) 172102.
[25] H. B. Heersche et al., Electron transport through single Mn12 molecular magnets, Physical Review Letters, 96, (May 2006) 206801.
[26] J. He and S. M. Lindsay, On the Mechanism of Negative Differential Resistance in Ferrocenylundecanethiol Self-Assembled Monolayers, Journal of American Chemical Society, 127, (August 2005) 11932-11933.
[27] J. M. Seminario, A. G. Zacarias, and J. M. Tour, Theoretical Study of a Molecular Resonant Tunneling Diode, Journal of American Chemical Society, 122, (March 2000) 3015-3020.
[28] A. A. Farajian, R. V. Belosludov, H. Mizuseki, Y. Kawazoe, T. Hashizume, and B. I. Yakobson, Gate-induced switching and negative differential resistance in a single-molecule transistor: Emergence of fixed and shifting states with molecular length, Journal of Chemical Physics, 127, (July 2007) 024901.
[29] X. J. Liu, K. L. Dong, and Z. An, Influence of heterogeneous sulfur atoms on the negative differential resistance effect in polythiophene, Journal of Applied Physics, 116, (September 2014) 093706.
[30] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Physical Review Letters, 42, (1979) 1698.
[31] T. C. Chung, J. H. Kaufman, A. J. Heeger, and F. Wudl, Charge storage in doped poly(thiophene): Optical and electrochemical studies, Physical Review B, 30, (July 1984) 702.
[32] T. C. Li and S. P. Lu, Quantum conductance of graphene nanoribbons with edge defects, Physical Review B, 77, (February 2008) 085405.
[33] M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100), Journal of Physics F: Metal Physics, 14, (May 1984) 1205.
[34] S. Datta, Electronic transport in Messoscopic systems, 1st ed. Cambridge, 1997.