Manuscript ID : JOPN-2304-1288 (R4)
Visit : 121
Page: 68 - 80
10.30495/jopn.2023.31798.1288
20.1001.1.24237361.2023.8.2.5.3
Article Type:
Original Research
Subject Areas :
Journal of Optoelectronical Nanostructures
Amir Noferesti
1
,
Masoud Kavosh Tehrani
2
,
Abbas Maleki
3
1 - Faculty of applied science, Malek Ashtar University of Technology, Iran.
2 - Faculty of applied science, Malek Ashtar University of Technology, Iran.
3 - Faculty of applied science, Malek Ashtar University of Technology, Iran.
Received: 2023-04-23
Accepted : 2023-06-05
Published : 2023-05-01
Keywords:
References:
Reinberg AR, Riseberg LA, Brown RM, Wacker RW, Holton WC. GaAs: Si LED Pumped Yb‐Doped YAG Laser. Applied Physics Letters 19.1 (1971) 11-13. Available: http://doi:10.1063/1.1653723
Ostermayer Jr FW, Allen RB, Dierschke EG. Room‐Temperature cw Operation of a GaAs1− x P x Diode‐Pumped YAG: Nd Laser. Applied Physics Letters 19.8 (1971) 289-292. Available:
http://doi:10.1063/1.1653922
Chesler RB, Draegert DA. Miniature diode‐pumped Nd: YALG lasers. Applied Physics Letters 23.5 (1973) 235-236. Available:
http://doi:10.1063/1.1654871
Farmer GI, Kiang YC. Low‐current‐density LED‐pumped Nd: YAG laser using a solid cylindrical reflector. Journal of Applied Physics 45.3 (1974) 1356-1371. Available: http://doi:10.1063/1.1663413
Saruwatari M, Kimura T, Yamada T, Nakano JI. LiNdP4O12 laser pumped with an Al x Ga1− x As electroluminescent diode. Applied Physics Letters 27.12 (1975) 682-684. Available: http://doi:10.1063/1.88337
Stone J, Burrus CA, Dentai AG, Miller BI. Nd: YAG single‐crystal fiber laser: Room‐temperature cw operation using a single LED as an end pump. Applied Physics Letters 29.1 (1976) 37-39. Available:
http://doi:10.1063/1.88863
Budin JP, Neubauer M, Rondot M. Miniature Nd‐pentaphosphate laser with bonded mirrors side pumped with low‐current‐density LED’s. Applied Physics Letters 33.4 (1978) 309-311. Available: http://doi:1063/1.90350
Servatkhah, M, Goodarzi, S. Interaction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters. Journal of Optoelectronical Nanostructures3 (2017) 25-38. Available:
http://20.1001.1.24237361.2017.2.3.3.1
Rezvani Jalal, M., Habibi, M. Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser. Journal of Optoelectronical Nanostructures 2 (2017) 61-70. Available: http://20.1001.1.24237361.2017.2.2.7.3
Amirhoseiny, M., Alahyarizadeh, G. Enhancement of deep violet InGaN double quantum wells laser diodes performance characteristics using superlattice last quantum barrier. Journal of Optoelectronical Nanostructures 6.2 (2021) 107-120. Available:
http://doi:10.30495/jopn.2021.4776
Servatkhah, M., Hashemi, P., Pourmand, R. Binding energy in tuned quantum dots under an external magnetic field. Journal of Optoelectronical Nanostructures 7.4 (2022) 49-65. Available:
http://doi:10.30495/jopn.2022.30924.1270
Barbet A, Balembois F, Paul A, Blanchot JP, Viotti AL, Sabater J, Druon F, Georges P. Revisiting of LED pumped bulk laser: first demonstration of Nd: YVO4 LED pumped laser. Optics Letters 39.23 (2014) 6731-6734. Available: http://doi:10.1364/OL.39.006731
Turnbull GA, Yang Y, Shaw P, Ruseckas A, Samuel ID. Light-emitting diode pumped polymer lasers. InOrganic Light Emitting Materials and Devices XII 7051 (2008) 249-259. Available:
http://doi:10.1117/12.795883
Htein L, Fan W, Watekar PR, Han WT. Amplification by white light-emitting diode pumping of large-core Er-doped fiber with 12 dB gain. Optics Letters 37.23 (2012) 4853-4855. Available:
http://doi:10.1364/OL.37.004853
Lee K, Bae S, Kwak JS, Kwon JH, hoon Yi J. Study of a QCW Light-emitting-diode (LED)-pumped Solid-state Laser. Journal of the Korean Physical Society 59.5 (2011) 3239-3245. Available:
http://doi:10.3938/jkps.59.3239
Villars B, Hill ES, Durfee CG. Design and development of a high-power LED-pumped Ce: Nd: YAG laser. Optics Letters 40.13 (2015) 3049-3052. Available: http://doi: 10.1364/OL.40.003049
Shahi, S. Flattening Few Mode Fiber Laser Source Based on PMF and Loop Mirror in a Ring Cavity Resonator. Journal of Optoelectronical Nanostructures 1 (2023) 84-94. Available:
http://doi:10.30495/jopn.2023.31308.1276
Tarkashvand M, Farahbod AH, Hashemizadeh SA. First demonstration of green and amber LED-pumped Nd: YAG laser. Laser Physics 25.8 (2018) 055801. Available: http://doi:10.1088/1555-6611/aaa9ed
[19] Cho CY, Pu CC, Chen YF, Su KW. Energy scale-up and mode-quality enhancement of the LED-pumped Nd: YAG Q-switched laser achieving a millijoule green pulse. Optics Letters 44.13 (2019) 3202-3205. Available: http://doi:10.1364/OL.44.003202
Pichon P, Barbet A, Blengino D, Legavre P, Gallinelli T, Druon F, Blanchot JP, Balembois F, Forget S, Chénais S, Georges P. High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd: YAG passively Q-switched laser. Optics & Laser Technology 96 (2017) 7-12. Available: http://doi:1016/j.optlastec.2017.04.009
Zhao T, Xiao H, Ge W, Zhong Q, Yu J, Li M, Li J, Fan Z. Light-emitting-diode-pumped active Q-switched Nd: YLF laser. Optics Letters 44.8 (2019) 1956-1959. Available: http://doi:10.1364/OL.44.001956
Xiao H, Zhao T, Ge W, Zhong Q, Li M, Yu J, Fan Z, Bian S, Chen Y. High Stability LED-Pumped Nd: YVO4 Laser with a Cr: YAG for Passive Q-Switching. Crystals 9.4 (2019) 201. Available:
http://doi:10.3390/cryst9040201
Noferesti A, Kavosh Tehrani M, Maleki A. Simulation and experimental study of the side LED-pumped Nd: YAG laser. Journal of Optoelectronics and Advanced Materials 25 (2023) 1-9. Available: https://joam.inoe.ro
Zahedi SM, Farahbod AH, Mahmoudi M. LED-pumped solid-state lasers with an improved optical pump system. Chinese Journal of Physics 78 (2022) 471-484. Available: http://doi:10.1016/j.cjph.2022.07.018
Cho CY, Pu CC, Su KW, Chen YF. LED-side-pumped Nd: YAG laser with> 20% optical efficiency and the demonstration of an efficient passively Q-switched LED-pumped solid-state laser. Optics Letters 42.12 (2017) 2394-2397. Available: http://doi:10.1364/OL.42.002394