Subject Areas : Journal of Optoelectronical Nanostructures
Hamdollah Salehi 1 , peiman Amiri 2 , rohollah zare Hasanabad 3
1 - Department of Physics, Faculty of Science, Shahid Chamran University of
Ahvaz, Ahvaz, Iran
2 - Department of Physics, Faculty of Science, Shahid Chamran University of
Ahvaz, Ahvaz, Iran
3 - Department of Physics, Faculty of Science, Shahid Chamran University of
Ahvaz, Ahvaz, Iran
Keywords:
Abstract :
[1] N. J. Gerein, J.A. Haber, One-step synthesis and optical and electrical properties of thin filmCu3BiS3 for use as a solar absorber in photovoltaic devices, Chem. mat, 18 (2006) 6297-6302.
[2] D. Li and X. Y. Qin, Thermoelectric properties of CuSbSe2 and its doped compounds by Ti and Pb at low temperatures from 5to310K, J. Appy.Phys. 100 (2006) 023713.
[3] L. Soliman, A.M. Abo El Soad, H.A. Zayed, S.A. El Ghfar, Structural and electrical properties of CuSbTe2, CuSbSe2 and CuSbS2 Chalcogenide thin films, J. Fizika A 11 (2002) 139-152.
[4] J. Zhou, G.-Q. Bian, Q.-Y. Zhu, Y. Zhang, C.-Y .Li, J. Dai, Solvothermal crystal growth of CuSbQ2 (Q= S, Se) and the correlation between macroscopic morphology and microscopic structure, J.Sol.Chem, 182 (2009) 259-264.
[5] O. Madelung, U. Rössler, M. Schulz, CuSbSe2 crystal structure, physical properties, in: Ternary Compounds, Organic Semiconductors, Springer BerlinHeidelberg, (2000) 1-4.
[6] D. Colombara, L.M. Peter, K.D. Rogers, J.D. Painter, S. Roncallo, Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors, J. thin. Sol. films 519 (2011) 7438-7443.
[7] K. H. Madsen, J. Singh, BoltzTraP a code for calculating band-structure dependent quantities, J. com. Phy. 175 (2006) 67-71.
[8] http://www.quantum-espresso.org.
[9] D. Hamann, M .Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Journal of Physical Review Letters, 43 (20) (1979) 1494.
[10] M. Cohen and V. Heine, The fitting of pseudopotentials to experimental data and their subsequent application, Journal of Solid state physics, 24 (1970) 37-248.
[11] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, Journal of Computer Physics Communications, (2001).
[12] http://Levilenz.com/BoltzTrap/BoltzTrap_Totorial.zip.
[13] M. Grundmann, Kramers–Kronig Relations, in the Physics of Semiconductors, Springer, (2010) 775-776.
[14] D. O. Eriksson, R. Ahuja, B. Johansson, M. Brooks, T. Gasche, S. Auluck, J. Wills, Optical properties of the group-IVB refractory metal compounds, Phy. Rev. B, 54(3) (1996) 1673-1681.
[15] C. Ambrosch-Draxl, J. O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Com. Phy. Com., 17 (2006) 1-14.
[16] H. Haug, S.W. Koch, Quantum theory of the optical and electronic properties of semiconductors, World Scientific, (2004).
[17] S. Baroni, Thermal properties of Materials from ab Initio Quasi-Harmonic Phonons, J. Rev. Min. Geo. 71 (2009) 39-57.
[18] P. Giannozzi and S. Baroni, Density-functional perturbation theory, in Handbook of Materials Modeling, (2005) 195-214.
[19] J. C. Zheng, Recent advance on thermoelectric materials, 3 (200).
[20] T. M. Tritt, Thermoelectric materials: principles, structure, properties, and applications, Encyclopedia of Materials: Science and technology, 10 (2002) 1-11.