Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Physics, Islamic Azad University, Shabestar Branch, Shabestar, Iran
Keywords:
Abstract :
[1] Z. Zare and A. Gharaat. Investigation of thermal tunable nano metallic photonic crystal filter with mirror. JOPN. [Online]. 3 (3) (2018, Summer) 27-36. Available: http://jopn.miau.ac.ir/article_3043.html.
[2] T. Froutan fard kobar olia1 and A. Vahedi. Temperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures. JOPN. [Online]. 2(4) (2017, Autumn) 57-70. Available: http://jopn.miau.ac.ir/article_2574.html.
[3] R. Talebzadeh and M. Bavaghar. Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry. JOPN. [Online]. 2(4) (2017, Autumn) 83-92. Available: http://jopn.miau.ac.ir/article_2576.html.
[4] K. Milanchian and Z. eyni. Analytical Investigation of TM Surface Waves in 1D Photonic Crystals Capped by a Self-Focusing Left-Handed Slab. JOPN. [Online]. 2(4) (2017, Autumn) 19-32. Available: http://jopn.miau.ac.ir/article_2571.html.
[5] N. Ansari and E. Mohebbi. Broadband and high absorption in Fibonacci photonic crystal including MoS2 monolayer in the visible range. J. Phys. D: Appl. Phys. [Online]. 51(11) (2018) 115342-115348. Available: http://iopscience.iop.org/article/10.1088/1361-6463/aaacbd/meta.
[6] E. Macia. Optical applications of Fibonacci dielectric multilayers. Ferroelectrics. [Online]. 250 (2001, March) 401-410. Available: https://www.tandfonline.com/doi/abs/10.1080/00150190108225111.
[7] D. Lusk. Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal. Opt. Commun. [Online]. 198 (2001, November) 273-279. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401801015310.
[8] R. W. Peng. Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Appl. Phys. Lett. [Online]. 80 (2002, April) 3063. Available: https://aip.scitation.org/doi/10.1063/1.1468895.
[9] H. Zhang, S. Liu, X. Kong, B. Bian and Y. Dai. Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals. Solid State Commun. [Online]. 152 (2012, December) 2113-2119. Available: https://www.sciencedirect.com/science/article/pii/S0038109812005297.
[10] C. H. Costa, L. F. C. Pereira, and C. G. Bezerra. Light propagation in quasiperiodic dielectric multilayers separated by grapheme. Phys. Rev. B. [Online]. 96 (2017, September) 125412. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.125412.
[11] F. U. Al-sheqefi and W. Belhadj. Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices and Microstructures. [Online]. 88 (2015, December) 127-138. Available: https://www.sciencedirect.com/science/article/pii/S0749603615301853?via%3Dihub.
Absorption spectra of a graphene embedded one dimensional Fibonacci aperiodic structure * 57
[13] Y. Chen, L. Bian, P. Liu, G. Li, Y. Xie. Controlling light absorption and transmission in graphene-embedded structure with Fano resonance and FP resonance. Superlattices and Microstructures. 124 (2018, December) 185-191. Available: https://www.sciencedirect.com/science/article/pii/S074960361831396X.
[14] Ali Moftakharzadeh, B. Afkhami Aghdaand Mehdi Hosseini. Noise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode. JOPN. [Online]. 3 (3) (2018, Summer) 1-12. Available: http://jopn.miau.ac.ir/article_3040.html.
[15] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Graphene based materials: Past, present and future. Prog. Mater. Sci. [Online]. 56 (2011, October) 178-1271. Available:
https://www.sciencedirect.com/science/article/pii/S0079642511000442?via%3Dihub.
[16] Y. Yamaguchi, S. Takagi and M. Takenaka. Low-loss graphene-based optical phase modulator operating at mid-infrared wavelength. Jpn. J. Appl. Phys. [Online]. 57 4) (2018, March) 401-406. Available:
http://iopscience.iop.org/article/10.7567/JJAP.57.04FH06.
[17] S. Aydin, B. Kalkan, C. Varlikli and C. elebi, P3HTgraphene bilayer electrode for Schottky junction photodetectors. Nanotechnol. [Online]. 29 (14) (2018, February) 145502-145511. Available: http://iopscience.iop.org/article/10.1088/1361-6528/aaaaf5/meta.
[18] Y. Li, L. Qi, J. Yu, Z. Chen, Y. Yao and X. Liu. One-dimensional multi-band terahertz graphene photonic crystal filters. Opt. Mater. Express. [Online]. 7 (2017, May) 1228-1239. Available: https://www.osapublishing.org/ome/abstract.cfm?uri=ome-7-4-1228.
[19] D. Smirnova. Deeply subwavelength electromagnetic Tamm states in graphene metamaterials. Phys. Rev. B. [Online]. 89 (2014, June) 245414. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.245414.
[20] B. Zhao and Z. M. Zhang. Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings. ACS Photonics. [Online]. 2 (11) (2015, October) 1611-1618. Available: https://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00410.
[21] A. Andryieuski and A. V. Lavrinenko. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express. [Online]. 21 (2013, April) 91449155. Available:
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-7-9144.
[22] L. Falkovsky and S. Pershoguba. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B. [Online]. 76 (15) (2007, October) 153410. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.153410.
[23] H. Hung, C. Wu and S. Chang. Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys. [Online]. 110 (2011, October) 093110. Available: https://aip.scitation.org/doi/abs/10.1063/1.3660230.
[24] J. Topham, O. Boorman, I. L. Hosier. M. Praeger, R. Torah, A. Vaughan, T. Andritsch and S. G. Swingler. Dielectric studies of polystyrene-based, high-permittivity composite systems. IEEE. [Online]. (CEIDP) (2014, October) 711-714. Available: https://ieeexplore.ieee.org/document/6995854.
[25] C. Shearer, A. D. Slattery and A. J. Stapleton. Accurate thickness measurement of graphene, Nanotechnol. [Online]. 27 (2016, February) 125704. Available: http://iopscience.iop.org/article/10.1088/0957-4484/27/12/125704/pdf.