Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Engineering Sciences, Faculty of Technology and Engineering
East of Guilan, University of Guilan, Rudsar-Vajargah, Iran
Keywords:
Abstract :
[1] Y. Yang, Y. Zeng. Enhanced performance of InGaN light-emitting
diodes with InGaN/GaN superlattice and graded-composition InGaN/GaN
superlattice interlayers. Phys. Status Solidi A. 211 (7) (2014) 1640–1644.
[2] L. Cheng and S. Wu. Performance enhancement of blue InGaN lightemitting
diodes with a GaN AlGaN–GaN last barrier and without an AlGaN
electron blocking layer, IEEE Journal of Quantum Electronics. 50 (4)
(2014).
Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering * 23
[3] M. Alias, A. Al-Omari, F. Maskuriy, F. Faiz, and S. Mitan. Optimisation of
optical properties of a long-wavelength GaInNAs quantum-well laser diode.
Quantum Electronics. 43 (11) (2013).
[4] M. Gholampour, A. Abdollah-zadeh, L. Shekari, R. Poursalehi and M.
Soltanzadeh. Green Method for Synthesizing Gallium Nitride
Nanostructures at Low Temperature. Journal of Optoelectronical
Nanostructure. 3 (2018) 51-64.
[5] A. Paliwal, K. Singh and M. Mathew, Hole injection enhancement in
InGaN laser diodes, International Conference on Fiber Optics and
Photonics, IIT, New Delhi, India, (2018) Dec. 12-15.
[6] M. Mahbub Satter, Design and theoretical study of wurtzite III-N
deepultraviolet edge emitting laser diodes, Ph.D. Dissertation, Georgia
Institute of Technology (2014).
[7] B. C. Lin, K. J. Chen, C. H. Wang, C. H. Chiu, Y. P. Lan, C. C. Lin, P.
T. Lee, M. H. Shih, Y. K. Kuo, H.C. Kuo. Hole injection and electron
overflow improvement in InGaN/GaN light-emitting diodes by a tapered
AlGaN electron blocking layer. Optics Express. 22 (2014) 463.
[8] M. Tangi, P. Mishra, B. Janjua, A. Prabaswara, C. Zhao, D. Priante, J. W.
Min, T. Khee Ng, and B. S. Ooi. Role of quantum-confined stark effect on
bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum
disk amber light emitting diodes. Journal of Applied Physics. 123 (2018)
105702.
[9] S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si and J. Li, Influence of
AlGaN electron blocking layer on modulation bandwidth of GaN-based
light emitting diodes. ECS Solid State Letters. 3 (2014) R11.
[10] A. X. Li, C. L. Mo, J. L. Zhang, X. L. Wang, X. M .Wu, G. X. Wang, F.
Y. Jiang. Effect of Mg-preflow for p-AlGaN electron blocking layer on the
electroluminescence of green LEDs with V-shaped pits. Chinese Physics
Letters. 3 (2018) 027301.
[11] Z. H. Zhang, S. W. Huang Chen, C. Chu, K. Tian, M. Fang, Y. Zhang, H.
C. Kuo. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting
diodes with a specifically designed super lattice p-type electron blocking
layer for high Mg doping efficiency. Nanoscale Research Letters. 13 (2018)
1.
[12] T. Kolbe, A. Knauer, J. Rass, H. K. Cho, S. Hagedorn, S. Einfeldt, M.
Kneissl and M. Weyers. Effect of electron blocking layer doping and
composition on the performance of 310 nm light emitting diodes. Materials.
10 (2017) 1396.
[13] J. Piprek. Analysis of efficiency limitations in high-power InGaN/ GaN
laser diodes. Opt. Quant. Electron. 48 (2016) 471.
[14] N. Tetsuo, I. Nobuyuki, T. Kazuyoshi , K. Keita and K. Tetsu. Wide
range doping control and defect characterization of GaN layers with
various Mg concentrations. Journal of Applied Physics. 124 (2018) 165706.
[15] B. Zhu, Z. H. Zhang, S. T. Tan, S. Lu, Yi. Zhang, X. Kang, N. Wang,
N. Hasanov, H. V. Demir. Effect of Mg doping in the barriers on the
electrical performance of InGaN/GaN-based light-emitting diodes. Physica
E: Low-dimensional Systems and Nanostructures. 98 (2018) 29.
[16] P. Chen, C. H. Kuo, W. C. Lai, Y. A. Chen, L. Chang and S. Chang. GaNbased
light-emitting-diode with a p-InGaN layer. Journal of Display
Technology. 10 (3) (2014) 204-207.
[17] X. Li, D. Zhao, D. Jiang, P. Chen, Z. Liu, Ji. Zhu, M. Shi, D. Zhao and
W. Liu Suppression of electron leakage in 808 nm laser diodes with
asymmetric waveguide layer. Journal of Semiconductors. 37 (1) (2016)
014007.
[18] S. Nakamura. InGaN-based blue laser diodes. IEEE Journal of Selected
Topics in Quantum Electronics. 3 (3) (1997) 712-718.
[19] D. H. Hsieh, A. J. Tzou, T. S. Kao, F. I. Lai, D. W. Lin, B. C. Lin, T. C.
Lu, W. C. Lai, C. H. Chen and H. C. Kuo. Improved carrier injection in
GaN-based VCSEL via AlGaN/GaN multiple quantum barrier electron
blocking layer. Optics Express. 23 (2015) 27145.
[20] M. Xia, H. Ghafouri Shiraz. Analysis of carrier heating effects in
quantum well semiconductor optical amplifiers considering holes’ Nonparabolic
density of states. Optical and Quantum Electronics. 47 (7) (2015)
1847-1858.
[21] M. Re. Jalal and M. Habibi. Simulation of Direct Pumping of Quantum
Dots in a Quantum Dot Laser. Journal of Optoelectronical Nanostructure. 2
(2017) 61-69.
[22] M. Riahinasab and E. Darabi. Analytical Investigation of Frequency
Behavior in Tunnel Injection Quantum Dot VCSEL. Journal of
Optoelectronical Nanostructure. 3 (2018) 65-75
[23] H. Bahramiyan and S. Bagheri. Linear and nonlinear optical properties
of a modified Gaussian quantum dot: pressure, temperature and impurity
effect. Journal of Optoelectronical Nanostructure. 3 (2018) 79-99.
[24] J. Piprek. Internal power loss in GaN-based lasers: Mechanisms and
remedies. Opt. Quant. Electron. 49 (2017) 329.
[25] G. Kyritsis and N. Zakhleniuk. Self-consistent simulation model and
enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser
diodes. IEEE Journal of Selected Topics in Quantum Electronics. 19 (5)
(2013).
[26] V. S. Volcheck, V. R. Stempitsky, Suppression of the self- heating effect
in GaN-HEMT by few layer graphene heat spreading elements. Journal of
Physics: Conf. Series. 917 (2017) 082015.
[27] Z. Danesh Kaftroudi, E. Rajaei and A. Mazandarani. Simulation of a
single-mode tunnel-junction-based long-wavelength VCSEL. Journal of
Russian Laser Research. 35 (2) (2014) 124-137.
[28] J. Piprek and S. Nakamura. Physics of high-power InGaN/GaN lasers.
IEE Proc.-Optoelectron. 149 (4) (2002) 145-151.
[29] T. Wang, J. Xu, X. Wang. Self-heating dependent characteristic of GaNbased
light-emitting diodes with and without AlGaInN electron blocking
layer. Chin. Sci. Bull. 59 (20) (2014) 2460–2469.
[30] S. Salimpour and H. Rasooli Sagha. Impressive Reduction of Dark
Current in InSb Infrared Photodetector to achieve High Temperature
Performance. Journal of Optoelectronical Nanostructure. 3 (2018) 81-95.
[31] L. A. M. Sulmon, Static and dynamic characteristics of InGaN-based laser
diodes, Phd Thesis, LASPE (2014).
[32] J. Piprek and Z. M. Li. Electroluminescent cooling mechanism in
InGaN/GaN light-emitting diodes. Opt. Quant. Electron. 48 (2016) 472.
[33] B. S. Ryvkin, E. A. Avrutin and J. T. Kostamovaara, Optical loss
suppression in long-wavelength semiconductor lasers at elevated
temperatures by high doping of the n-waveguide. Semicond. Sci. Technol.
33 (2018) 105010.