Subject Areas : Journal of Optoelectronical Nanostructures
Hossein Bahramiyan 1 , Somayeh Bagheri 2
1 - Department of Physics, Marvdasht Branch, Islamic Azad University,
Marvdasht, Iran
2 - Department of Physics, Marvdasht Branch, Islamic Azad University,
Marvdasht, Iran
Keywords:
Abstract :
[1] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, UK, 1997).
[2] Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, UK, 1997).
[3] M. Bouhassoune, R. Charrour, M. Fliyou, D. Bria, and A. Nougaoui, Polaronic and magnetic field effects on the binding energy of an exciton in a quantum well wire. J. Appl. Phys, 91 (2002) 232.
[4] A. I. Ekimov and A. A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34 (1981) 345.
[5] R. Khordad, Effect of pressure on spin–orbit interaction in a quantum wire with V-shaped cross section. Solid State Sci. 19 (2013) 63.
[6] A. Gharaati and R. Khordad, A new confinement potential in spherical quqntum dots:Modified Gaussian potential. Superlatt. Microstruct. 51 (2012) 194.
[7] R. Khordad, Pressure effect on optical properties of modified Gaussian quantum dots. Physica B, 407 (2012) 1128.
[8] M. Lu, X. J. Yang, S. S. Perry,J. W. Rabalais, Self-organized nanodot formation on MgO (100) by ion bombardment at high temperatures. Appl. Phys. Lett. 80 (2002) 2096.
[9] P. Nandakumar, C. Vijayan, Y. V. G. S. Murti, Optical absorption and toluminescence studies on CdS quantum dots in Nafion. J. Appl. Phys. 91 (2002) 1509.
[10] L. Yan, J. Seminario, Electron transport in Nano‐Gold–Silicon interfaces. J. Quantum Chem. 107 (2007) 440.
[11] I. Lazic, Z. Ikonic, V. Milanovic, R. W. Kelsall, D. Indjin, P. Harrison, Electron transport in n-doped Si/SiGe quantum cascade structures. J.Appl. Phys. 101 (2007) 93703.
[13] M. S. Atoyan, E. M, Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields, 31 (2006) 83.
[12] Kazaryan, H. A. Sarkisyan, Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields. Phys E, 31 (2006) 83.
[14] G. Bastard, Hydrogenic impurity states in a quantum well: A simple model.
Phys. Rev. B, 24 (1981) 4714.
[15] E. M. Kazaryan, A. V. Meliksetyan, L. S. Petrosyan, H. A. Sarkisyan, Impurity states of narrow-gap semiconductor parabolic quantum dot in the presence of extremely strong magnetic field. Phys. E, 31 (2006) 228.
[16] J. V. Crnjanski, D. M. Gvozdic Serbian, Self-Consistent Treatment of V-Groove Quantum Wire Band Structure in Nonparabolic Approximation. J. Electr. Eng, (2004) 69.
[17] D. S. Chuu, C. M. Hsiao, W. N. Mei, Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B, 46 (1992) 3898.
[18] J. L. Zhu, Exact solutions for hydrogenic donor states in a spherically rectangular quantum well. Phys. Rev.B, 39 (1988) 8780.
[19] S.G. Jayam, K. Navaneethakrishnan, Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot. Solid State Commun, 126 (2003) 681.
[20] E. Kasapoglu, H. Sari, I. Sokmen, Geometrical effects on shallow donor impurities in quantum wires. Phys.E, 19 (2003) 332.
[21] V. N. Mughnetsyan, M. G. Barseghyan, A. A. Kirakosian, Stark effects on bound polarons in polar cylindrical quantum wires with finite confining potential. Superlattices Microstruct, 44 (2008) 86.
[22] A. Bilekkaya, S. Aktas, S. E. Okan, F. K. Boz, The electronic properties of a coaxial square GaAs/AlxGa1−xAs quantum well wire in an electric field. Superlattices Microstruct, 44 (2008) 96.
[23] R. Khordad, Electronic properties of two interacting electrons in a quantum pseudodot under magnetic field: Perturbation theory and two parameters variational procedure. Phys. E, 62 (2013) 166.
[24] E. Kasapoglu, F. Ungan, H. Sari, I. Sokmen, The hydrostatic pressure and temperature effects on donor impurities in cylindrical quantum wire under the magnetic field. Phys. E, 42 (2010) 1623.
[25] P. Villamil, Donor in cylindrical quantum well wire under the action of an applied magnetic field. Phys. E, 42 (2010) 2436.
[26] R. Khordad, Effect of pressure on spin–orbit interaction in a quantum wire with V-shaped cross section. Solid State Sci, 19 (2013) 63.
[27] S.T. Perez-Merchancano, R. Franco, J. Silva-Valencia, Impurity states in a spherical GaAs–Ga1-x AlxAs quantum dots: Effects of hydrostatic pressure .Microelectron. J, 39 (2008) 383.
[28] E. Tangarife, M.E. Mora-Ramos, C.A. Duque, Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots. Superlatt. Microstruct. 49 (2011) 275.
[29] A. Sivakami, M. Mahendran, Hydrostatic pressure and temperature dependence of correlation energy in a spherical quantum dot. Superlatt. Microstruct, 47 (2010) 530.
[30] N. Leino, T.T. Rantala, Temperature Effects on Electron Correlations in Two Coupled Quantum Dots. Few-Body Syst, 40 (2007) 237.
[31] P. Nithiananthi, K. Jayakumar, Effect of temperature on the binding energy of low lying excited states in a quantum well. Phys. B, 17 (2003) 5811.
[32] M. J. Karimi, G. Rezaei, M, Nazari, Linear and nonlinear optical properties of multilayered spherical quantum dots: effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature. Journal of Luminescence, 145 (2014) 55.
[33] F. S. Levin and J. Shertzer, Finite-element solution of the Schrödinger equation for the helium ground state. Phys. Rev. A, 32(1985) 3285.
[34] D. Ahn, S. L. Chuang, Calculation of linear and nonlinear intersub band optical absorptions in a quantum well model with an applied electric field.