Subject Areas : Journal of Optoelectronical Nanostructures
Maedeh Akbari Eshkalak 1 , Rahim Faez 2
1 - Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 - Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
Keywords:
Abstract :
[1] A. Tejeda and P. G. Soukiassian, Graphene: from functionalization to devices, IOP Science, vol. 47, 2014.
[2] N. Ghobadi and M. Pourfath, A Comparative Study of Tunneling FETs Based on Graphene and GNR Heterostructures, IEEE Trans, 61 (2014) 186-192.
[3] A. Chanana, A. Sengupta, and S. Mahapatra, Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide semiconductor field effect transistor with Stone Wales defects, Journal of Applied Physics, 115 (2014) 034501.
[4] M. Sanaeepur, A. Yazdanpanah, and M. J. Sharifi, Performance Analysis of Graphene Nanoribbon Field Effect Transistors in the Presence of Surface Roughness, Electron Devices, IEEE Transactions on , 61 (2014) 1193 - 1198.
[5] G. S. Kliros, Modeling of Carrier Density and Quantum Capacitance in Graphene Nanoribbon FETs, International Conference on Microelectronics (ICM), 2010.
[6] Y. Chen, A. Sangai, M. Gholipour, and D. Chen, Graphene Nano-Ribbon Field-Effect Transistors as Future Low-Power Devices, IEEE International Symposium on Low Power Electronics and Design (ISLPED), 2013.
[7] H. Da, K.T. Lama, G. S. Samudra, G. Liang, S. K. Chin, Influence of contact doping on graphene nanoribbon heterojunction tunnelling field effect transistors, Solid-State Electronics, 77 (2012) 51-55.
[8] W. We, L. Na, R. Yuzhou, L. Hao, Z. Lifen, L. Jin, J. Junjie, C. Xiaoping, W. Kai, and X. Chunping, A computational study of the effects of linear doping profile on the high-frequency and switching performances of hetero-material-gate CNTFETs, Journal of Semiconductors, 34 (2013) 124002.
[9] R. Yousefi, M. Shabani, M. Arjmandi, S.S. Ghoreishi, A computational study on electrical characteristics of a novel band-to-band tunnelling graphene nanoribbon FET, Superlattices and Microstructures, 60 (2013) 169-178.
[10] H. Sarvari, R. Ghayour, and E. Dastjerdy, Frequency analysis of graphene nanoribbon FET by Non-Equilibrium Green’s Function in mode space, Physica E, 43 (2011) 1509–1513.
[11] R. Grassi, A. Gnudi, E. Gnani, S. Reggiani, and G. Baccarani, Mode Space Approach for Tight Binding Transport Simulation in Graphene Nanoribbon FETs, IEEE Trans., 10 (2011) 371-378.
[12] Y. Ouyang, Y. Yoon, and J. Guo, Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study, IEEE Trans. Electron Devices, 54 (9) (2007) 2223–2231.
[13] H. Mohammadpour, A. Asgari, Numerical study of quantum transport in the double-gate graphene nanoribbon field effect transistors, ScienceDirect, 43 (9) (2011) 1708–1711.
[14] Z. Arefinia, A. Orouji, Investigation of the novel attributes of a carbon nanotube FET with high-k gate dielectrics, physica E, 40 (2008) 3068-71.
[15] G. S. Kliros, Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors, Springer, 9 (1) (2014).