Subject Areas : Journal of Optoelectronical Nanostructures
Masoud Rezvani 1 , Maryam Fathi Sepahvand 2
1 - 1Department of physics, Malayer University, Malayer, Iran.
2 - 1Department of physics, Malayer University, Malayer, Iran.
Keywords:
Abstract :
[1] M. A. Garcia,Surface Plasmons in metallic nanoparticlesandFundamentals applications.J. Phys. D: Appl. Phys. October 20, 44 ( 28) (2011) 1-43.
[2] S. A.Maier. Plasmonics: Fundamentals and Applications. Springer. New York : 2007.
[3] L. Debin, C. Z.Ning. All-semiconductor active plasmonic system in mid-infrared wavelengths. Optics Express. 19 (15) (2011) 14594-14603.
[4] N. Peyghambarian,W.Koch, A. Mysyrowicz.Introduction to semicunductor optics. University of Michigan. Prentice Hall, London, 1993.
[5] D. Jung, J. Kim, Ch. Nahm, H. Choi, S. Nam, B. ParkReview Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon. E. M. L. 7 (2011) 185-194.
[6] E. C. Dreaden, R. D. Near, T. Abdallah, M. H. Talaat , M. A. El-Sayed. Multimodal plasmon coupling in low symmetry gold nanoparticle pairs detected in surface-enhanced Raman scattering. Appl. Phys. Lett. 98 (2011).
[7] N. Bi, M. Hu, Y. Tianc, H. Zhangc, M. Hu, H. Qic, H. Zhua .Determination of 6-thioguanine based on localized surface plasmon resonance of gold nanoparticle. Spectrochim ActaA Mol Biomol Spectrosc. Elsevier B.V., 107 (2013) 24–30.
[8] J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen. Electrostatic plasmon resonances of metal nanoparticles in stratified geometries.Proceedings of the SPIE, 7757 (2010 ) 1-11.
[9] I. D. Mayergoyz, D. R. Fredkin, Z. Zhang.Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B. 155412 (72 )(2005) 1-15.
[10] D. Zhang, A. Horneber, U. Heinemeyer, K. Braun, F. Schreiber, R. Scholz, A.J. Meixner. Plasmon resonance modulated photominescence and Raman spectroscopy of diindenoperylene organic semiconductor thin film. JOL. Elsevier. 131(2010) 502–505.
[11] D.V. Guzatov, V.V. Klimov, M.Yu. Pikhota.Plasmon Oscillations in Ellipsoid Nanoparticles: Beyond Dipole Approximation. Laser Physics. Original Russian. 20 ( 1) (2009) 85–99.
[12] M.V. Rigoa, J. Seoa, W. Kimb, S. Jung.Plasmon coupling of R6G-linked gold nanoparticle assemblies for surface-enhanced Raman spectroscopy. Vib. Spectrosc. Elsevier .57 (2011) 315– 318.
[13] K. A. Willets, R. P. Van Duyne.Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem.: The Annual Review of Physical Chemistry, 58 (2007) 267–297.
[14] A. Arbabi. Terahertz Surface Plasmon Polariton-like Surface Waves for Sensing Applications. Ph.D thesis,University of Waterloo,Ontario,Canada, 2009.
[15] J. Fischer. Near-field mediated Enhancement Effects on Plasmonic Nanostructures. Mainz : Johannes Gutenberg-Universiy, 2010.
[16] S. Lal, S. Link,N. J. Halas.Nano-optics from sensing to waveguiding. Nature photonics. Nature Publishing Group, 1 (2007 ) 641-648.
[17] Lindquist, N. Charles. Engineering metallic nanostructures for surface plasmon resonance sensing. Ph.D. Dissertation, Major: Electrical Engineering,University of Minnesota. 2010.
[18] M. Frederiksen. Plasmon Hybridization and Symmetry Breaking. Interdisciplinary Nanoscience Center. Ph.D Thesis, Aarhus University, 2013.
[19] H. Horvath.Gustav Mie and the scattering and absorption of light by particles: Historic development and basics. J. Quant Spectrosc Ra Transfer. Elsevier, 110 (11) (2009) 787–799.
[20] B. S. Luk’yanchuk,M. I. Tribel’ski,V. V. Ternovski. Light scattering at nanoparticles close to plasmon resonance frequencies. J. Opt. Technol. Optical Society of America. 73 (6)(2006) 371-377.
[21] A. O.Govorov, J. Lee, N. A.Kotov. Theory of plasmon-enhanced Förster energy transfer in optically-excited semiconductor and metal nanoparticles. Phys. Rev. B. The American Physical Society, 76, 125308, (2007).
[22] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, R. R. Naik .Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Metal Nanoparticle Assemblies.Nano Letters, 6 (2006) 984-994.
[23] M. Fathi Sepahvand, M. Rezvani Jalal, Analytical and numerical simulation of potential and field distribution near plasmonic clusters, 2nd national conference on nano from theory to application, Isfahan 1392.
[24] M. Fathi Sepahvand, M. Rezvani Jalal, Numerical calculation of resonant frequencies of three-body plasmonic clusters, National conference on nano in science and engineering, Malayer 1393.
[25] K. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas. Propag. 14 (1966) 302-307.
[26] M. K. Oh, S. Park, S. K. Kim, S. Lim. Finite Difference Time Domain Calculation on Layer-by-Layer Assemblies of Close-Packed Gold Nanoparticles. J. Compt. Theor. Nanoscience.7 (2010) 1-10.
[27] B. T.Draine, P. J.Flatau.Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am, April 11(4) (1994) 1491-1499.
[28] J. Liaw. Analysis of the surface plasmon resonance of a single core-shelled nanocomposite by surface integral equations. Eng Anal Bound Elem. Elsevier, 30 (2006) 734–745.
[29] J. Liaw, New surface integral equations for the light scattering of multi-metallic nanoscatterers. Eng Anal Bound Elem. Elsevier, 31 (2007) 299–310.
[30] J. Liaw, Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method. J. Opt. Soc. Am. A. Optical Society of America, 23 (1)(2006) 108-116.
[31] M. Fathi Sepahvand, M. Rezvani Jalal, Simulation of Light Scattering from a Plasmonic Nano-Wire Using Surface Integral Method, PSI, Zahedan1393.
[32] G. B.Arfken,H. J. Weber, F. E. Harris.Mathematical Methods For Physicists: A Comprehensive Guide. Seventh Edition. Waltham, Ma 02451, Usa. Elsevier Inc., 2013.