Subject Areas : Journal of Optoelectronical Nanostructures
Mahdi Gholampour 1 , Amir Abdollah-zadeh 2 , Leila Shekari 3 , Reza Poursalehi 4 , mahdi soltanzadeh 5
1 - 1.Physics Group, Faculty of Basic Sciences, Imam Ali University, Tehran, Iran 2.Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares
University, P.O. Box 14115-143, Tehran, Iran
2 - Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares
University, P.O. Box 14115-143, Tehran, Iran
3 - Barman International Technology Development Company
4 - Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares
University, P.O. Box 14115-143, Tehran, Iran
5 - Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares
University, P.O. Box 14115-143, Tehran, Iran
Keywords:
Abstract :
[1] Pankove JI. Luminescence in GaN. J Lumin. (1973) .
[2] Pankove JI. Luminescent properties of GaN. Solid State Commun. (1970) .
[3] Kaun SW. Molecular beam epitaxy for high-performance Ga-face GaN electron devices. Semicond Sci Technol. 28 (7) (July 2013) 074001.
[4] Shibata H. High Thermal Conductivity of Gallium Nitride (GaN) Crystals Grown by HVPE Process. Mater Trans. 48 (10) (2007) 2782–2786.
[5] Pengelly RS. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans Microw Theory Tech. 60 (6) (2012) 1764–1783.
[6] Du Y. Electronic structure and optical properties of zinc-blende GaN. Optik (Stuttg). 123 (December 2012) 2208–2212.
[7] Kente T. Gallium nitride nanostructures: Synthesis, characterization and applications. J Cryst Growth. 444 (2016) 55–72.
[8] Saron KM a. Self-catalyst growth of novel GaN nanowire flowers on Si (111) using thermal evaporation technique. Mater Chem Phys. 139 (2)–(3) (May 2013) 459–464.
[9] Saron KMA. NH3-Free growth of GaN nanostructure on n-Si (111) substrate using a conventional thermal evaporation technique. J Cryst Growth. 349 (June 2012) 19–23.
[10] Yasuhiko A. Progress in GaN-based nanostructures for blue light emitting quantum dot lasers and vertical cavity surface emitting lasers. IEICE Trans Electron. E83 (2000) 564–572.
[11] Kang MS. Gallium nitride nanostructures for light-emitting diode applications. Nano Energy. 1 (3) (May 2012) 391–400.
[12] Gopalakrishnan M. Structural and optical properties of GaN and InGaN nanoparticles by chemical co-precipitation method. Mater Res Bull. 47 (11) (2012) 3323–3329.
[13] Gholampour M. Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors
62 * Journal of Optoelectronical Nanostructures Winter 2017 / Vol. 2, No. 4
Applications by Plasma-Assisted Vapor Phase Deposition Method. J Nanostructures. 7 (3) (2017) 200–204.
[14] Schuster F. Self-assembled GaN nanowires on diamond. Nano Lett. 12 (May 2012) 2199–2204.
[15] Im MK. Metalorganic Molecular Beam Epitaxy of GaN Thin Films on a Sapphire Substrate. Jpn J Appl Phys. 39 (2000) 6170–6173.
[16] Grant VA. Optimization of RF plasma sources for the MBE growth of nitride and dilute nitride semiconductor material. Semicond Sci Technol. 22 (2) (2007) 15.
[17] Jeong JK. Improvement in the Crystalline Quality of Epitaxial GaN Films Grown by MOCVD by Adopting Porous 4H-SiC Substrate. Electrochem Solid-State Lett. 7 (2004) C43–C45.
[18] Shekari L. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation. Appl Surf Sci. 263 (2012) 50–53.
[19] Zhu CF. Influence of double buffer layers on properties of Ga-polarity GaN films grown by rf-plasma assisted molecular-beam epitaxy. Mater Lett. 57 (2003) 2413–2416.
[20] Mata R. Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature. J Cryst Growth. 334 (1) (2011) 177–180.
[21] Hou W. Synthesis of GaN Core-shell Nanowires by Plasma-Enhanced Chemical Vapor Deposition. Chem Eng. (2010) 8–9.
[22] Hou WC. Nucleation control for the growth of vertically aligned GaN nanowires. Nanoscale Res Lett. 7 (January 2012) 1–6.
[23] Nagata T. Hydrogen Effect on Near-Atmospheric Nitrogen Plasma Assisted Chemical vapor Deposition of GaN Film Growth. J Appl Phys. 105 (2009) 536–541.
[24] Sani R a. Growth of GaN " lm on a-plane sapphire substrates by plasma-assisted MOCVD. 221 (2000) 311–315.
[25] Qiaoqin Y. Plasma-enhanced Deposition of Nano-Structured Carbon Films. Plasma Sci Technol. 7 (February 2005) 2660–2664.
[26] Gholampour M. Synthesis of GaN Nanoparticles by DC Plasma Enhanced Chemical Vapor Deposition. 829 (2014) 897–901.
[27] Cai XM. CVD growth of InGaN nanowires. J Alloys Compd. 467 (1) (2009) 472–476.
[28] Ng DKT. Selective growth of gallium nitride nanowires by femtosecond laser patterning. J Alloys Compd. 449 (1)–(2) (January 2008) 250–252.
[29] Huang E. A simple synthesis of Ga 2 O 3 and GaN nanocrystals. RSC Adv. 7 (76) (2017) 47898–47903.
[30] Rabiee Golgir H. Fast Growth of GaN Epilayers via Laser-Assisted Metal–Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications. ACS Appl Mater Interfaces. 9 (25) (2017) 21539–21547.
[31] Liu K-W. Growth of gallium nitride on silicon by molecular beam epitaxy incorporating a chromium nitride interlayer. J Alloys Compd. 511 (1) (January 2012) 1–4.
[32] Cui J. Morphology and growth mechanism of gallium nitride nanotowers synthesized by metal–organic chemical vapor deposition. J Alloys Compd. 563 (June 2013) 72–76.
[33] Shekari L. Fabrication of GaN nanowires on porous GaN substrate by thermal evaporation. Mater Sci Semicond Process. 16 (2) (2013) 485–488.
[34] Beh KP. The growth of III–V nitrides heterostructure on Si substrate by plasma-assisted molecular beam epitaxy. J Alloys Compd. 506 (1) (September 2010) 343–346.
[35] Butcher KSA. Optical and structural analysis of GaN grown by remote plasma enhanced laser induced chemical vapour deposition. phys stat sol. 503 (1) (2002) 499–503.
[36] Saron KMA. Enhanced ultraviolet emission in photoluminescence of GaN film covered by ZnO nanoflakes. J Lumin. 134 (2013) 266–271.
[37] Qaeed M a. Cubic and hexagonal GaN nanoparticles synthesized at low temperature. Superlattices Microstruct. 64 (December 2013) 70–77.
[38] Nagata T. GaN film fabrication by near-atmospheric plasma-assisted chemical vapor deposition. Jpn J Appl Phys. 46 (No. 2) (2007) 43–45.
[39] Timoshkin AY. DFT modeling of chemical vapor deposition of GaN from organogallium precursors. 2. structures of the oligomers and thermodynamics of the association processes. J Phys Chem A. 105 (2001) 3249–3258.
[40] Chang Y-K. Synthesis and characterization of indium nitride nanowires by plasma-assisted chemical vapor deposition. Mater Lett. 63 (August 2009) 1855–1858.
[41] Gholampour M. A catalyst free method to grow GaN nanowires on porous Si at low temperature. Ceram Int. 41 (10) (2015) 13855–13860.
[42] Torii K. Reflectance and emission spectra of excitonic polaritons in GaN. Phys Rev B. 60 (7) (August 1999) 4723–4730.
[43] Wei X. Synthesis and characterization of GaN nanowires by a catalyst assisted chemical vapor deposition. Appl Surf Sci. 257 (September 2011) 9931–9934.
[44] Yoon J-W. Quantum confinement effect of nanocrystalline GaN films prepared by pulsed-laser ablation under various Ar pressures. Thin Solid Films. 471 (1) (2005) 273–276.
[45] Matoussi A. Luminescent properties of GaN films grown on porous silicon
substrate. J Lumin. 130 (3) (March 2010) 399–403.
[46] Oh TS. Spatial stress distribution and optical properties of GaN films grown on convex shape-patterned sapphire substrate by metalorganic chemical vapor deposition. J Alloys Compd. 509 (6) (February 2011) 2952–2956.
[47] Shekari L. Structural characterizations of GaN nanowires grown on Si (111) substrates by thermal evaporation. Mater Lett. 114 (January 2014) 140–143.
[48] Chin AH. Photoluminescence of GaN nanowires of different crystallographic orientations. Nano Lett. 7 (2007) 626–631.
[49] Harima H. Properties of GaN and related compounds studied by means of Raman scattering. J Phys Condens Matter. 14 (2002) 967–993.
[50] Dračínský M. Ab initio modeling of fused silica, crystal quartz, and water Raman spectra. Chem Phys Lett. 512 (1)–(3) (August 2011) 54–59.
[51] Hnnoerson S. silicate Raman spectra of gallium and germanium substituted vaiiations in intermediate range order Uniuersitry. Am Mineral. 70 (1985) 946–960.
[52] Livneh T. Polarized Raman scattering from single GaN nanowires. Physcal Rev B. 74 (2006) 035320.
[53] Sekine T. Surface Phonons Studied by Raman Scattering in GaN Nanostructures. J Phys Soc Japan. 86 (7) (2017) 74602.
[54] Munawar Basha S. Effect of growth temperature on gallium nitride nanostructures using HVPE technique. Phys E Low-Dimensional Syst Nanostructures. 44 (9) (2012) 1885–1888.
[55] Yadav BS. Highly oriented GaN films grown on ZnO buffer layer over quartz substrates by reactive sputtering of GaAs target. Thin Solid Films. 517 (2) (November 2008) 488–493.
[56] Nyk M. Synthesis, structure and optical properties of GaN nanocrystallites. Mater Sci Semicond Process. 8 (4) (August 2005) 511–514.
[57] Chen R. Top-gate thin-film transistors based on GaN channel layer. Appl Phys Lett. 100 (2) (2012) 022111.
[58] Souri D. Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions. J Non Cryst Solids. 355 (31)–(33) (2009) 1597–1601.