Subject Areas : Journal of Optoelectronical Nanostructures
samira bahrami 1 , omid bahrami 2
1 - Department of physics, Farhangian university, Tehran
2 - Department of physics, Farhangian university, Tehran
Keywords:
Abstract :
[1] M. ZekavatFetrat, M. Sabaeian G. Solookinejad,, The effect of ambient
temperature on the linear and nonlinear optical properties of truncated
pyramidal-shaped InAs/GaAs quantum dot ,Journal of Optoelectronical
Nanostructures (JOPN), 6 (3) (2021) 81-92.
https://doi.org/10.30495/JOPN.2021.29138.1240
[2] G. Liang, X. Yu, X. Hu, B. Qiang, C. Wang, QJ WANG, Mid-infrared
photonics and optoelectronics in 2D materials, Materials Today, 51 (2021)
294-316.
https://doi.org/10.1016/j.mattod.2021.09.021
[3] A. Granados del Águila, S. Liu, T. TH Do, Z. Lai, TH. Tran, Linearly
Polarized Luminescence of Atomically-Thin MoS2 Semiconductor
Nanocrystals, ACS Nano, 13 (11) (2019) 13006-13014.
https://doi.org/10.1021/acsnano.9b05656
[4] C. Hou, J. Deng, J. Guan, Q. Yang, Z. Yu, Y. Lu, Photoluminescence of Monolayer MoS2 Modulated by Water/O2/Laser Irradiation, Physical Chemistry Chemical Physics, 23(43) (2021) 24579-24588. https://doi.org/10.1039/D1CP03651C [5] M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng, L. Zhang, Synthesis of two‐dimensional transition metal dichalcogenides for electronics and optoelectronics, InfoMat 3(4) (2021) 362-396 . https://doi.org/10.1002/inf2.12161 [6] W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al- Mahboob, A. M. van Der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman et al, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111(10) (2013) 106801. https://doi.org/10.1103/PhysRevLett.111.106801 [7] Z. Sun, A. Martinez, and F. WANG, Optical modulators with 2D layered materials, Nature Photonics, 10(4) (2016) 227-238. https://doi.org/ 10.1038/nphoton.2016.15
[8] L. Mennel, M. Paur, T. Mueller, Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2, APL Photonics 4(3) (2019) 034404. https://doi.org/10.1063/1.5051965 [9] Autere, A., Jussila, H., Dai, Y., Wang, Y., Lipsanen, H., & Sun, Z., Nonlinear optics with 2D layered materials, Advanced Materials, 30(24) (2018) 1705963. https://doi.org/10.1002/adma.201705963 [10] N. An, T. Tan, Z. Peng, C. Qin, Z. Yuan, L. Bi, C. Liao, Electrically Tunable Four-Wave-Mixing in Graphene Heterogeneous Fiber for Individual Gas Molecule Detection, Nano Lett., 20(9) (2020) 6473-6480. https://doi.org/10.1002/adma.201705963 [11] M. hasani, R. chegell, Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field , Journal of Optoelectronical Nanostructures (JOPN), 5(2) (2020) 49-64 . https://doi.org/ 20.1001.1.24237361.2020.5.2.5.2
[12] S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.-M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao, C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q.-H. Xu, A. T. S. Wee, K. Suenaga, F. Ding, and G. Eda, Vapour-liquid-solid growth of monolayer MoS2 nanoribbons, Nature materials, 17 (6) (2018) 535-542. https://doi.org/ 10.1038/s41563-018-0055-z
[13] X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy, Advanced Materials 30(20) (2018) 1704896. https://doi.org/ 10.1002/adma.201704896 [14] Z. Sun, Electrically tuned nonlinearity, Nature Photonics, 12(7) (2018) 383-385. https://doi.org/ 10.1038/s41566-018-0201-9
[15] H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, M. A. Vincenti, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide, Light: Science & Applications, 6(10) (2017) e17060-e17060. https://doi.org/ 10.1038/lsa.2017.60 [16] M. Olyaee, M. Tavakoli , A. Mokhtari, Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure, Journal of Optoelectronical Nanostructures (JOPN), 4 (3) (2019) 95-116 . https://doi.org/ 20.1001.1.24237361.2019.4.3.7.9 [17] Q. Leng, H. Su, J. Liu, L. Zhou, K. Qin, Q. Wang, J. Fu, Enhanced second-harmonic generation in monolayer MoS2 on suspended metallic nanostructures by plasmonic resonances, Nanophotonics 10(7) (2021) 1871-1877. https://doi.org/10.1515/nanoph-2021-0030
[18] K.-I. Lin, Y.-H. Ho, S.-B. Liu, J.-J. Ciou, B.-T. Huang, C. Chen, H.-C. Chang, C.-L. Tu, and C.-H. Chen, Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers, Nano Lett. ,18(2) (2018) 793-797. https://doi.org/ 10.1021/acs.nanolett.7b04006
[19] C. T. Le, D. J. Clark, F. Ullah, V. Senthilkumar, J. I. Jang, Y. Sim, M.-J. Seong, K.-H. Chung, H. Park, and Y. S. Kim, Ann, Nonlinear optical characteristics of monolayer MoSe2, Phys. 528 (7-8) (2016) 551-559. https://doi.org/ 10.1002/andp.201600006 [20] NA. Pike, R. Pachter, Second-Order Nonlinear Optical Properties of Monolayer Transition-Metal Dichalcogenides by Computational Analysis, J. Phys. Chem. C, 125(20), 20 (2021) 11075-11084. https://doi.org/ 10.1021/acs.jpcc.1c02380 [21] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, and W. Yao, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides, Sci. Rep. 3 (1) (2013) 1-5. https://doi.org/ 10.1038/srep01608 [22] A. V. Pakhomov, M. Hammerschmidt, S. Burger, T. Pertsch, and F. Setzpfandt, Modeling of surface-induced second-harmonic generation from multilayer structures by transfer matrix method, Optics Express, 29(6) (2021) 9098-9122. https://doi.org/ 10.1364/OE.417066 [23] L .Peng, L. Hong, Z. Li ,Theoretical solution of second-harmonic generation in periodically poled lithium niobate and chirped periodically poled lithium niobate thin film via quasi-phase-matching, Phys. Rev. A, 104 (5) (2021), 053503.
https://doi.org/10.1103/PhysRevA.104.053503
[24] A. Gharaati , N. Miri , Z. Zareian, Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures, Journal of Optoelectronical Nanostructures (JOPN), 2 (1) (2017) 49-58. https://doi.org/20.1001.1.24237361.2017.2.1.6.0
[25]. Hamidi, S. M., T. Parvini, and M. M. Tehranchi, Efficient second harmonic conversion efficiency through one-dimensional coupled resonator poled nonlinear optical waveguide, Applied Physics A, 111(2) (2013) 525-529. https://doi.org/10.1007/s00339-013-7599-1
[26]. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edition, Springer Science & Business Media (2004).
https://doi.org/10.1007/b138376
[27]. J.D. Joannopoulos, s.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light, Princeton University Press, Princeton, NJ (2011).
https://doi.org/10.2307/j.ctvcm4gz9
[28]. C.M. Soukoulis, Photonic crystals and light localization in the 21st century, Springer Science and Business Media, Berlin (2012).
https://doi.org/10.1007/978-94-010-0738-2
[29] http://sciencenotes.org/printable-periodic-table-chart-2015.
[30] M. K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of applied crystallography, 44 (6) (2011) 1272-1276.
https://doi.org/10.1107/S0021889811038970
[31] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.M. Shih, J. Hone, and T. F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 , Phys. Rev. B ,90 (20) (2014) 205422.
https://doi.org/10.1103/PhysRevB.90.205422 [32] G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Optics communications, 163(1-3) (1999) 95-102.
https://doi.org/ 10.1016/S0030-4018(99)00091-7
[33] A. Kumar, V. Kumar, A. Nautiyal, K.S. Singh, S.P. Ojha, Optical switch based on nonlinear one dimensional photonic band gap materia, Optik, 145 (2017) 473-478. https://doi.org/ 10.1016/j.ijleo.2017.07.062
[34] O. Bahrami, A. Baharvand, Nonlinear Optical Effects in One Dimensional Multi-Layer Structure Consisting of Polar Ferroelectric Called LiTaO3, Journal of Optoelectronical Nanostructures (JOPN), 6 (1) (2021) 21-34.
https://doi.org/10.30495/JOPN.2021.4539