Experimental Comparison of 3D Components of Flow Velocity Around a
T-shaped Spur Dike Located in a 90 Degree Bend with Rigid Bed Using the Results of the Flow-3D Software Program
Subject Areas :
Article frome a thesis
محمد واقفی
1
,
مریم اکبری
2
,
علیرضا فیوض
3
1 - استادیار سازه های هیدرولیکی، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خلیج فارس، بوشهر
2 - دانشجوی کارشناسی ارشد، سازه های هیدرولیکی، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خلیج فارس، بوشهر
3 - استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خلیج فارس، بوشهر
Received: 2015-08-16
Accepted : 2015-08-16
Published : 2015-07-23
Keywords:
Flow-3D,
90 degree bend,
Experimental Model,
T-shaped spur dike,
3D components of flow velocity,
Abstract :
The Flow-3D is one of the computational fluid dynamics software programs designed to solve Navier-Stokes equations under various conditions in order to determine the flow pattern. The flow around the spur dike is one instance of various complex flows, which has long been an intriguing phenomena. Moreover, placing such structures in a bend would make the determination of 3D components of the flow velocity even more complicated. Considering the difficulty of conducting experiments in different situations and the various parameters affecting the flow pattern determination, the need to use numerical software programs, such as the Flow-3D, would be more significant. With the experimental data on the T-shaped spur dike located in a 90 degree bend with rigid bed, this paper has studied the 3D components of the output velocity of the Flow-3D and compared them with the experimental results. The 3D components of the flow at longitudinal section, cross section, and plan views were compared and the average of the numerical data error was calculated under various conditions. The average error, 1>%, was observed between the numerical and experimental model of the flow vertical velocity data occurring at the cross section 17%. Moreover, the measured average error values of the longitudinal and transverse velocities of the flow were 6% and 10%, respectively. The results obtained from the comparisons indicated a significant similarity between the numerical model of the Flow-3D and experimental data, demonstrating the enhanced capability of such software programs in simulating the flow pattern around hydraulic structures such as spur dikes placed in river bends.
References:
- شریفی منش، ح. 1374. بررسی و مقایسه میزان آبشستگی اطراف آبشکنهای باز با استفاده از شبیه آبی. پایاننامه کارشناسی ارشد. دانشگاه تربیت مدرس.
- واقفی، م. 1388. مطالعه آزمایشگاهی الگوی جریان و آبشستگی پیرامون آبشکن های T شکل مستقر در قوس 90 درجه. رساله دکتری. دانشگاه تربیت مدرس.
واقفی، م.، ک. بیروتی، و م. اکبری. 1392. مطالعه عددی اثر طول جان آبشکن سرسپری مستقر در مسیر مستقیم با بستر صلب بر الگوی جریان. دوازدهمین کنفرانس هیدرولیک ایران. دانشکده کشاورزی و منابع طبیعی دانشگاه تهران.
واقفی، م.، و پ. رادان. 1393. مطالعه عددی آبشستگی و الگوی جریان در نهر قوسی 90 درجه با وجود آبشکن T شکل با تغییر در شعاع انحنای قوس. مجله علمی پژوهشی مهندسی منابع آب. 7(23): 37-51.
واقفی، م.، ه. زره پوش شیرازی، و م. اکبری. 1393. مطالعه عددی تأثیر شعاع انحنا بر الگوی جریان پیرامون آبشکن سرسپری مستغرق. مجله علمی پژوهشی آبیاری و آب. 5(18): 145-156.
واقفی، م.، م. قدسیان، ب. سلیمانی، و م. اکبری. 1393. بررسی عددی تأثیر شعاع انحنای قوس بر الگوی جریان پیرامون آبشکن T شکل در قوس 90 درجه با بستر صلب. مجله علمی پژوهشی مهندسی منابع آب. 7(22): 51-62.
واقفی، م.، م. قدسیان، و س.ع.ا. صالحی نیشابوری. 1388. مطالعه آزمایشگاهی الگوی جریان سه بعدی پیرامون آبشکن T شکل مستقر در قوس 90 درجه. مجله علمی پژوهشی پژوهشهای حفاظت آب و خاک. 6(2): 105-129.
Acharya, A., A. Acharya and J. G. Duan. 2013. Three dimensional Simulation of flow field around series of spur dikes. Int. Refereed J. Eng. Sci. 2: 36-57.
Azinfar, H., and J.A. Kells. 2008. Backwater prediction due to the blockage caused by a single submerged spur dike in an open channel. J. Hydraul. Eng. 134: 1153–1157.
Copeland, R.R. 1983. Bank protection techniques using spur dikes. Hydraulic Laboratory, U.S. Army Engineer Waterways Experiments Station Vicksburg, Mississippi.
Duan, J. G., L. He, X. Fu, and Q. Wang. 2009. Mean flow and turbulence around experimental spur dike. Adv Water Resour. 32(12): 1717-1725.
Fazli, M., M. Ghodsian, and S. A. A. Salehi. 2008. Scour and flow field around a spur dike in 90 bend. Int J. Sedim. Res. 23: 56-68.
Flow Science, Inc. 2008. FLOW-3D User’s Manual. Flow Science, Inc., 9.3 editions.
Ghodsian, M., and M. Vaghefi. 2009. Experimental study on scour and flow field in a scour hole around a T-shaped spur dike in a 90° bend. J. Sedim Res. 24:145-158.
Gill, M. A. 1972. Erosion of sand beds around spur dikes. J. Hydraul. Div. 98: 91-98.
Kassem, A., and M. H. Chaudhry. 2002. Numerical modeling of bed evolution in channel bends. J Hydraul. Eng. 128: 507-514.
Masjedi, A., I. Akbari and H. Abyar. 2011. Evaluating scour at L-shape spur dike in a 180 degree bend. World Appli Sci J. 15: 1740-1745.
Nagata, N., T. Hosda, and T. Nakato. 2005. Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng. 131: 1074-1087.
Naji Abhari, M. N., M. Ghodsian, M. Vaghefi and N. Panahpur. 2010. Experimental and numerical simulation of flow in a 90 bend. Flow Measur and Instrument. 21: 292-298.
Nortek Vectrino Velocimeter User Guide. 2004. Nortek, USA.
Perzedwojski, B., R. Blazejewski, and K.W. Pilarczyk. 1995. River training techniques: Fundamental, design and Application. A. A. Balkema. Rotterdam, the Netherlands.
Soliman, M. M., K. M. Attia, T. A. M. Kotb and A. F. Ahmed. 1997. Spur dike effects on the River Nile morphology after High Aswan Dam. Congr. Int. Associ Hydraul. Res. 120: 125-146.
Tingsanchali, T., and S. Maheswaran, 1990. 2-D depth averaged flow computation near groyne. J Hydraul. Eng. 116: 71-86.
Vaghefi, M., M. Ghodsian, and A. Adib. 2012. Experimental study on the effect of Froude number on temporal variation of scour around a T-shaped spur dike in a 90 degree bend. Appl. Mech. Mater. 147: 75-79.
Vaghefi, M., M. Ghodsian, and S. A. A. Salehi. 2009. Experimental study on the effect of a T-shaped spur dike length on scour in a 90 degree channel bend. Arab J. Sci Techn. 34: 337-348.
Vaghefi, M., M. Ghodsian and S. A. A. Salehi. 2012. Experimental study on scour around a T-shaped spur dike in a channel bend. Journal of Hydraulic Engineering. 138(5): 471-474.
Vaghefi, M., V. A. Mohsenimehr and M. Akbari. 2014. Numerical Investigation of Wing to Web Length Ratios Parameter of T-shaped Spur Dike in a 90 Degree Bend on Scour Pattern. Journal of river engineering. 2(3): 24-32.
Vaghefi, M., M. Shakerdargah, and M. Akbari. 2014. Numerical study on the effect of ratio among various amounts of submersion on three dimensional velocity components around T-shaped spur dike located in a 90 degree bend. Int J Sci Engi. Technol. 3: 675-679.
Vaghefi, M., M. Shakerdargah, A. R. Fiouz, and M. Akbari. 2014. Numerical investigation of the effect of Froude number on flow pattern around a single T-shaped spur dike in a bend channel. Int J Eng. Res. 3: 351-355.
Wu, W., W. Rodi and T. Wenka. 2000. 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng. 126: 4-15.
Yazdi, J., H. Sarkardeh, H. M. Azamathulla, and A. A. Ghani. 2010. 3D simulation of flow around a single spur dike with free-surface flow. Int J River Basin Manage. 8: 55-62.