Application of Fuzzy Group Decision-Making (FGDM) to Sustainable Development of Urban Water Systems
Subject Areas : Article frome a thesisSeyed Sajed Motevallian 1 , Massoud Tabesh 2 , Abbas Roozbahani 3
1 - کارشناسی ارشد مهندسی عمران-آب، دانشکده مهندسی عمران پردیس دانشکده های فنی، دانشگاه تهران
2 - استاد دانشکده مهندسی عمران و عضو قطب علمی مهندسی و مدیریت زیرساخت های عمرانی، پردیس دانشکده های فنی، دانشگاه تهران
3 - استادیار گروه آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران
Keywords: Planning, urban water, decision-making, reducing water consumption,
Abstract :
In sustainable development of urban water systems not only different economic, social, environmental and technical aspects should be taken into account, but also the priorities and preferences of all stakeholders and shareholders, including water users, service providers and other involved organizations should be considered. The complexity and multiplicity of variables that exist in a decision-making problem related to urban water systems calls for employing systematic and efficient methods, which can incorporate all criteria into a decision-making process as well as being capable of modeling uncertainties and ambiguities that lie in the problem. Fuzzy group decision-making (FGDM) methods are system analysis tools widely used for solving water resources and environmental planning and management problems. In this paper, an application of fuzzy analytic hierarchy process (FAHP) method in planning for sustainable development of urban water systems is demonstrated in terms of a case study. The objective of the implemented case study is to select a sustainable development scenario for the urban water system of a hypothetical region in Tehran called “Shahrak”. Four sustainable development criteria and eleven indicators were adopted to rank six development scenarios for Shahrak’s urban water system based on expert judgments elicited from questionnaires. The final results verified by some major decision-makers show that FAHP may facilitate the decision-making process for urban water managers and decision-makers and assist achieving the objectives of sustainable development in an urban water management sector.
1. اصغرپور، م. ج. 1382. تصمیمگیری گروهی و نظریهی بازیها با نگرش تحقیق در عملیات، چاپ اوّل، انتشارات دانشگاه تهران.
2. شرکت آب و فاضلاب استان تهران. 1379. گزارش آب شرب تهران: گذشته، حال و آینده. واحد روابط عمومی و آموزش همگانی.
3. شرکت آب و فاضلاب شهر تهران. 1389. اطلاعات و آمار اخذ شده از واحد امور مشترکین و نظارت بر درآمد شرکت آب و فاضلاب منطقهی دو شهر تهران.
4. شریعت، م.، آذر، ع.، ریاحی؛ خرم، م. 1382. اولویتبندی روشهای استفادهی مجدد از فاضلاب شهری تصفیه شده با استفاده از فرآیند تحلیل سلسله مراتبی فازی (FAHP)، نمونه موردی: فاضلاب شهری همدان. مجموعه مقالات ششمین همایش کشوری بهداشت محیط، دانشگاه علوم پزشکی مازندران، ساری، ایران.
5. قدسی پور، س. ح. 1388. فرآیند تحلیل سلسله مراتبی (AHP). چاپ هفتم، انتشارات دانشگاه صنعتی امیرکبیر،.
6. میان آبادی، ح.، افشار، ع. 1387. تصمیمگیری چندشاخصه در رتبهبندی طرحهای تأمین آب شهری، مجله آب و فاضلاب، 66: 45-34.
7. Abrishamchi, A., Ebrahimian, A., Tajrishi, and M., Mariño, M. A. 2005. Case study: application of multicriteria decision making to urban water supply. J. Wat. Resour. Plan. Mgmnt. 131: 326-335.
8. Bellman R. E., Zadeh L. A. 1970 Decision-making in a fuzzy environment management Sci. 17: 141–164.
9. Buckley, J. J. 1985. Fuzzy hierarchical analysis. Fuzzy Sets. Syst. 17: 223-247.
10. Butler, D., and Parkinson, J. 1997. Towards sustainable urban drainage. Water Sci. Technol. 35: 53–63.
11. Chang, D. Y. 1996. Application of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95: 649-665.
12. Deng, H. 1999. Multicriteria analysis with fuzzy pairwise comparison. Proceedings of IEEE International Fuzzy Systems Conference, Seoul, Korea, 726-731.
13. Hellström D., Jeppsson, U., and Kärrman, E. 2000. A framework for system analysis of sustainable urban water management. Environ. Impact Assess. Rev. 20: 311-321.
14. Khatri, K. B., Vairavamoorthy, K., and Akinyemi, E. 2011. Framework for computing a performance index for urban infrastructure systems using a fuzzy set approach. J. Infrastruct. Syst. 17: 163-175.
15. Lee-Kwang, H., and Jee-Hyong, L. 1999. A method for ranking fuzzy numbers and its applications to decision-Making. IEEE Trans. Fuzzy Sys. 7: 677-685.
16. Lundin, M., and Molander, S., Morrison, G. M. 1997. Indicators for development of sustainable water and wastewater systems. Proceedings of Sustainable Development Research Conference, Manchester, UK.
17. Malmqvist, and P. A., Palmquist, H. 2005. Decision support tools for urban water and wastewater systems – focusing on hazardous flows assessment. Water Sci. Technol. 51: 41-49.
18. Marsalek, J., Jiménez-Cisneros, B., Karamouz, M., Malmqvist, P. A., Goldenfum, J., and Chocat, B. 2008. Urban water cycle processes and interactions. Jointly published by UNESCO and Taylor & Francis, Leiden, The Netherlands.
19. Ness, B., Urbel-Pillrsalu, E., Anderberg, S., and Olsson, L. 2007. Categorising tools for sustainability assessment. Ecol. Econ. 60: 498-508.
20. Penning de Vries, F. W. T., Acquay, H., Molden, D., et al. 2003. Integrated land and water management for food and environmental security: Comprehensive assessment of water management in agriculture. International Water
Management Institute (IWMI), Colombo, Sri Lanka.
21. Saaty, T. L. 1980. The analytic hierarchy process. McGraw Hill International, NY, USA.
22. Saaty, T. L. 1990. Ratio scales derived from perturbations of consistent judgments. Behaviormetrika. 17: 1-21.
23. Söderberg, H., Kain, J. H., Åberg, H., Kärrman, E., and Van Moeffaert, D. 2004. Evaluating NAIADE with respect to stakeholder participation: Case studies of sustainable urban water management. Proceedings of the 4th International Conference on Decision Making in Urban and Civil Engineering, Porto, Portugal .
24. Tajrishy, M., and Abrishamchi, A. 2005. Integrated approach to water and wastewater management for Tehran, Iran. In Water Conservation, Reuse, and Recycling: Proceedings of an Iranian-American Workshop, The National Academies Press, Washington, D.C, USA.
25. Van Laarhoven, P. J. M., and Pedrycz, W. 1983. A fuzzy extension of Saaty's priority theory. Fuzzy Sets. and Syst. 11: 199-227.
26. WCED (World Commission on Environment and Development). 1987. Our common future. Oxford University Press, Oxford, UK.
27. Zadeh, L. A. 1965. Fuzzy sets. Inf. Control. 8: 338-353.
28. Zeng, W., Pan, Y. T., and Huang, H. M. 2014. Risk analysis model for water pipeline leakage based on FAHP and BPNN, Applied Mechanics and Materials, 441: 1093-1096.
29. Zimmermann, H. J. 1991. Fuzzy sets theory and its application. Kluwer Academic Publishers, The Netherlands.