Evaluating Parameters Influencing the Emergence and Increase of Non-Revenue Water Using Bayesian Networks (Case Study: District 4 of Tehran Water and Wastewater Company)
Subject Areas : Article frome a thesisMassoud Tabesh 1 , Niousha Rasi Faghihi 2 , Abbas Roozbahani 3 , Bardia Roghani 4 , Reza Heidarzadeh 5 , Sattar Salehi 6
1 - Professor and Member of Center of Excellence for Engineering and Management of Civil Infrastructures, School of Civil Engineering, College of Engineering, University of Tehran
2 - School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
3 - Department of Irrigation and Drainage Engineering, College of Abouraihan, University
of Tehran, Tehran, Iran
4 - School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
5 - School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
6 - Assistant Professor, Department of Civil Engineering, Islamic Azad University, Garmsar Branch, Garmsar, Iran
Keywords: questionnaire, Apparent Losses, Bayesian Network, Non-Revenue Water, Real Losses,
Abstract :
Effective strategies for optimal management of water distribution networks (WDNs) along with financial resources are clearly identifying design and performance parameters affecting the emergence of non-revenue water and reducing the impact of parameters. In this study, using references and experiences of experts in the field of WDN, the factors that are involved in the development of non-revenue water components were identified. Then, to collect the required information on the status of the parameters, officials’ and experts’ opinion were asked through questionnaires. Bayesian Networks (BNs) were used as a modeling tool so as to not only consider uncertainties associated to the lack of sufficient data and detailed information on non-revenue water components but also consider the probabilistic relationships between parameters. Finally, in order to analyze BN models results, a sensitivity index was proposed to prioritize parameters based on their impact. To investigate the usefulness of the proposed model, the area covered by District 4 of Tehran Water and Wastewater Company was selected as a case study. The results indicated that the probability that apparent losses, real losses and non-revenue water are high is 37.48 %, 35.04% and 32.2%, respectively.
1) امور نظام فنی و اجرایی معاونت برنامهریزی و نظارت راهبردی ریاست جمهوری 1391. راهنمای شناخت و بررسی عوامل مؤثر در آب به حساب نیامده و راهکارهای کاهش آن، نشریه شماره 556. امور نظام فنی و اجرایی معاونت برنامهریزی و نظارت راهبردی ریاست جمهوری. تهران. ایران. 179 ص.
2) پایگاه اطلاع رسانی وزارت نیرو ۱۳۹۵. تجهیز 1000 شهر به سامانه بالانس آب.http://news.moe.gov.ir/Detail?anwid=38816 بهمن ۱۳۹۵.
3) تابش م 1395. مدلسازی پیشرفته شبکههای توزیع آب. انتشارات دانشگاه تهران. تهران. ایران. 585 ص.
4) تابش م، روغنی ب 1393. مدیریت آب بدون درآمد در استانهای منطقه البرز جنوبی. کنفرانس مدیریت منابع و مصارف آب با تکیه بر توسعه پایدار منطقه البرز مرکزی:چالشها، راهبردها و رویکردهای نو. تهران. ایران.
5) خبرگزاری صدا و سیما ۱۳۹۴. 1200 تومان؛ قیمت تمام شده آب بها. http://www.iribnews.ir/fa/news/94809/۱۲۰۰-تومان-قیمت-تمام-شده-آب-بها. بهمن ۱۳۹۵.
6) روزبهانی ع 1391. مدل تصمیمگیری مبتنی بر ریسک برای مدیریت سیستمهای آب شهری. رساله دکتری. دانشکده مهندسی عمران. پردیس دانشکدههای فنی دانشگاه تهران. تهران. ایران.
7) شرکت آب و فاضلاب منطقه 4 تهران 1394. فرم بالانس آب برای سالهای 1391 تا 1394 در محدوده شرکت آب و فاضلاب منطقه 4. تهران. ایران.
8) Adams A S, LutzLey A N 2012. An empirical study of factors affecting water loss in Mexican cities. Journal of Water Sustainability. 2(3):167-178
9) Bromley J, Jackson N A, Clymer O J, Giacomello A M, Jensen F V 2005. The use of Hugin® to develop Bayesian networks as an aid to integrated water resource planning. Environmental Modelling & Software. 20(2):231-242.
10) Daniel WW 1999. Biostatistics: A foundation for analysis in the health sciences. 7th edition. Wiley. USA.
11) de Santa Olalla F M, Domínguez A, Artigao A, Fabeiro C, Ortega, J F 2005. Integrated water resources management of the hydrogeological unit Eastern Mancha using Bayesian belief networks. Agricultural Water Management. 77(1): 21-36.
12) Francis R A, Guikema S D, Henneman L 2014. Bayesian belief networks for predicting drinking water distribution system pipe breaks. Reliability Engineering & System Safety. 130:1-11.
13) Froelich W 2015. Forecasting daily urban water demand using dynamic gaussian Bayesian network. In: International Conference: Beyond Databases, Architectures and Structures. Springer nternational publishing. 26 May. New York City. USA. 333-342.
14) George D & Mallery P 2003. SPSS for Windows step by step: A simple guide and reference, 11.0 update (4th ed.). Boston: Allyn & Bacon.
15) Heckerman D 1996. A tutorial on learning with Bayesian networks, microsoft research advanced technology division. microsoft corporation. Redmond. Washington. USA.
16) HUGIN EXPERT A/S 2016. Hugin researcher userguide, version 7.8. HUGIN EXPERT A/S. Denmark.
17) International Water Association 2000. Performance indicators for water supply services, manual of best practice. IWA publishing. London. UK.
18) Kabir G, Tesfamariam S, Francisque A, Sadiq R 2015a. Evaluating risk of water mains failure using a Bayesian belief network model. European Journal of Operational Research. 240(1):220-234.
19) Kabir G, Tesfamariam S, Sadiq R 2015b. Predicting water main failures using Bayesian model averaging and survival modelling approach. Reliability Engineering & System Safety. 142:498-514.
20) Lai C H, Chan N W, Roy R 2017. Understanding public perception of and participation in non-revenue water management in Malaysia to support urban water policy. Water. 9(1):26.
21) Lawshe C H 1975. A quantitative approach to content validity. Personnel Psychology. 28(4):563-575.
22) Magiera E, Froelich W 2015. Application of Bayesian networks to the forecasting of daily water demand. In: Intelligent Decision Technologies. Springer international publishing. New York City. USA. 385-393.
23) Naing L, Winn T, Rusli B N 2006. Practical issues in calculating the sample size for prevalence studies. Archives of Orofacial Sciences. 1(1):9-14
24) Neapolitan R E 2004. Learning Bayesian networks. Prentice Hall. New Jersey. USA.
25) Prescher D 2003. A short tutorial on the expectation-maximization algorithm. Institute of logic, language and computation. University of Amsterdam. Netherlands.
26) van den Berg C 2015. Drivers of non-revenue water: A cross-national analysis. Utilities policy. 36:71-78.
27) Zyoud S H, Kaufmann L G, Shaheen H, Samhan S, Fuchs-Hanusch D 2016. A framework for water loss management in developing countries under fuzzy environment: Integration of fuzzy AHP with fuzzy TOPSIS. Expert Systems with Applications. 61:86-105.
_||_