Determination of the Effects of Milling Atmosphere on the Production Process and Characteristics of Boron Nanopowders
Subject Areas : journal of New MaterialsA. Seifolazadeh 1 , S. Mohammadi 2
1 - استادیار، گروه مهندسی شیمی، مجتمع دانشگاهی شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر
2 - دانشجوی دکتری مهندسی شیمی، مجتمع دانشگاهی شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر
Keywords: Boron Nanoparticles, Ball Mill, Milling Atmosphere,
Abstract :
The unique properties of boron powders will make an attractive prospect for practical applications in many industrial fields. Therefore, investigation of the effective agents on preparation of this material is very important. In this research, the effect of milling atmosphere on synthesis process of the boron nanopowders and properties of final products was investigated in a planetary ball mill. The process was performed using stoichiometric amounts of B2O3 and Mg powders as reactants (7.3 g). Milling was carried out at room temperature with a ball-to-powder weight ratio (22:1) and with a rotation speed of 520 rpm, in argon and air atmospheres for 9h, separately. Milled powders were leached by hydrochloric acid (25 wt%) and distilled water (twice) and the final products were dried. According to the obtained results, the amount of final product and its purity were more in the argon atmosphere than air. The EDS analyses results showed that boron powder can be prepared with the purity of about 90% in the mentioned conditions in the argon atmosphere. In addition, XRD analysis revealed that the product has a non-crystalline structure. Also, SEM observations confirmed the particle size distribution of between about 48 to 81 nm.
References:
1. V. Udhayabanu, N. Singh and B. S. Murty, ”Mechanical activation of aluminothermic reduction of NiO by high energy ball milling”, J. Alloys and compounds, Vol. 497, pp. 142-146, 2010.
2. C. Suryanarayana, ” Mechanical alloying and milling”, Progress in Materials Science, Vol. 46, pp. 1-184, 2001.
3. ب. امینیکیا و ص. فیروزی، "بررسی پارامتر زمان آسیابکای بر ریز ساختار نهایی پودرTiB2-TiC نانوکریستالی تولیدی به روش سنتز احتراقی تحت ماکروویو"، مجله مواد نوین، جلد5، شماره 1، ص 15-25، پاییز 93.
4. F. J. Gotor, M. Achimovicova, C. Real and P. Balaz, “Influence of the milling parameters on the mechanical work intensity in planetary mills”, J. Powder Technology, Vol. 233, pp. 1-7, 2013.
5. L. Takacs, “Self-sustaining reactions induced by ball milling”, Progress in Materials Science, Vol. 47, pp. 355–414, 2002.
6. A. F. Fuentes and L. Takacs, “Preparation of multicomponent oxides by mechanochemical methods”, J. Mater Sci, Vol. 48, pp. 598–611, 2013.
7. C. Deidda, F. Delogu, F. Maglia, U. A. Tamburini and G. Cocco, “Mechanical processing and self-sustaining high-temperature synthesis of TiC powders”, J. Materials Science and Engineering A, Vol. 375–377, pp. 800–803, 2004.
8. G. B. Schaffer and P. G. McCormick, “Displacement reactions during mechanical alloying”, Metallurgetical Transactions, Vol. 21A, pp. 2789-2794, 1990.
9. J. J. Moore and H. J. Feng, “Combustion synthesis of advanced materials: part II. Classification, applications and modeling”, Progress in Material Science, Vol. 39, pp. 275-316, 1995.
10. V. I. Matkovich, Boron and refractory borides, Springer, 1977.
11. D. Agaoguliari, O. Balci, I. Duman and M. L. Ovecoglu, “Synthesis of α and β-rhombohedral boron powders via gas phase thermal dissociation of boron trichloride by hydrogen”, J. Metallurgical and Materials Transactions, Vol. 42, pp. 568-574, 2011.
12. P. R. Taylor, “Synthesis of boron using molten salt electrolysis”, US Patent 0294670A1, 2010.
13. R. Neelameggham, “Elemental boron and magnesium boride synthesis”, J. Manuf. Sci. Prod, Vol. 12, pp. 155–160, 2012.
14. G. F. Tavadze and A. S. Shteinberg, Production of advanced materials by methods of self-propagating high temperature synthesis, Springer Berlin Heidelberg, 2013.
15. S. Boily, H. D. Alamdary, R. Dubuc and J. Gaudet,“Process for the production of elemental boron by solid state reaction”; World Intellectual Property Organization Patent, International publication number WO 03/051773, 2003.
16. R. Ricceri and P. Matteazzi, “Mechanochemical synthesis of elemental boron”, Int. J. Powder Metallurgy, Vol. 39, pp. 48-52, 2003.
17. D. Agaogulliari, O. Balci and I. Duman, “Mechanism & effects of various reducing agents on the fabrication of elemental boron”, Roznov pod Radhostem, Czech Republic, EU, 2010.
18. Y. Demirsar, “Investigation of the reaction of boron oxide with aluminum powder and method development for boron determination in the reaction”, MS Thesis, Izmir Institute of Technology, Turkey, 2007.
19. N. P. Nies and E. W. Fajans, “Production of elemental boron by magnesium reduction”, US Patent 2897056, 1959.
20. B. U. Yoo, H. H. Nersisyan, H. Y. Ryu and J. S. Lee, “Structural and thermal properties of boron nanoparticles synthesized from B2O3 + 3Mg + kNaCl mixture”, J. Combustion and Flame, pp. 1-7, 2014.
21. K. W. Ciurowa and K. Gamrat, “Some aspects of mechanochemical reactions”, Materials Science-Poland, Vol. 25, pp.219-232, 2007.
22. Z. H. Dou, T. A. Zhang, G. Y. Shi, C. Peng, M. Wen and J. He, “Preparation and characterization of amorphous boron powder with high activity”, Trans. Nonferrous Met. Soc. China, Vol. 24, pp. 1446−1451, 2014.