The effect of severe plastic deformation on the natural ageing behavior of aluminum alloy 2024
Subject Areas : journal of New MaterialsS. Khani Moghanaki 1 , M. Kazeminezhad 2
1 - دانشجوی دکترای دانشکده مهندسی و علم مواد-دانشگاه صنعتی شریف-تهران-ایران
2 - استاد دانشکده مهندسی و علم مواد-دانشگاه صنعتی شریف- تهران-ایران
Keywords: Severe plastic deformation, Natural ageing, AA2024,
Abstract :
The precipitation behavior and the hardness evolution of AA2024 under severe plastic deformation (SPD) and natural ageing have been studied. During SPD process, GPB zones/Cu-Mg co-clusters are dynamically precipitated. This is confirmed by elimination of GPB zones/Cu-Mg co-clusters formation effect in differential scanning calorimetery (DSC) study of deformed and undeformed samples. The occurrence of GPB zones or Cu-Mg co-clusters formation during SPD process reduces natural ageing kinetics of deformed samples. The formation of metastable phases at strain ~ 1 has been privileged in comparison with that of stable phases.
1. W. F. Smith, “Structure and properties of engineering alloys”. 2nd ed. New York: McGraw-Hill; 1993.
2. I. N. Khan, M. J. Starink and J. L. Yan, ‘A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys’, Materials Science and Engineering A, Vol. 472, pp. 66-74, 2008.
3. A. M. Zahra, C. Y. Zahra and B. Verlinden, “Comments on “Room-temperature precipitation in quenched Al–Cu–Mg alloys: a model for the reaction kinetics and yield-strength development”, Philosophical Magazine Letters, Vol. 86, pp. 235-242, 2006.
4. A. Charai, T. Walther, C. Alfonso, A. M. Zahra and C.Y. Zahra, “Coexistence of clusters, GPB zones, S′′-, S'- and S-phases in an Al-0.9% Cu-1.4% Mg alloy”, Acta Materialia, Vol. 48, pp. 2751-2764, 2000.
5. B. Klobes, K. Maier and T. E. M. Staab, “Natural ageing of Al–Cu–Mg revisited from a local perspective”, Materials Science and Engineering A, Vol. 528, pp. 3253-3260, 2011.
6. S. C. Wang, M. J. Starink and N. Gao, “Precipitation hardening in Al–Cu–Mg alloys revisited”, Scripta Materialia, Vol. 54, pp. 287-291, 2006.
7. M. J. Starink, N. Gao and J. L. Yan, “The origins of room temperature hardening of Al–Cu–Mg alloys”, Materials Science Engineering A, Vol. 387-389, pp. 222-226, 2004.
8. M. J. Starink, N. Gao, L. Davin, J. Yan and A. Cerezo, “Room temperature precipitation in quenched Al–Cu–Mg alloys: a model for the reaction kinetics and yield strength development”,
Philosophical Magazine, Vol. 85, pp. 1395-1417, 2005.
9. M. H. Farshidi, M. Kazeminezhad and H. Miyamoto, “On the natural aging behavior of Aluminum 6061 alloy after severe plastic deformation”, Materials Science and Engineering A, Vol. 580, pp. 202-208, 2013.
10. Y. Huang, J. D. Robson and P. B. Prangnell, “The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy”, Acta Materialia, Vol. 58, pp. 1643-1657, 2010.
11. Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing”, Acta Materialia, Vol. 52, pp. 4589-4599, 2004.
12. میثم میرزایی، محمدرضا روشن، سیروس جواد پور، افزایش شدید خواص مکانیکی آلیاژ 2024 با اعمال یک پاس کرنش نورد، مجله مواد نوین، جلد 4، شماره 3، صفحه 67-78، 1393.
13. S. B. Kang, C. Y. Lim, W. K. Hyoung and J. Mao, “Microstructure evolution and hardening behavior of 2024 aluminum alloy processed by the severe plastic deformation”, Materials Science Forum, Vol. 396-402, pp. 1163-1168, 2002.
14. M. Murayama, Z. Horita and K. Hono, “Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equal-channel angular pressing”, Acta Materialia, Vol. 49, pp. 21-29, 2001.