Experimental investigation of the efficiency of deposited TiO2 on porous aluminum in pollutant removal: a comparison between PEO and anodizing methods
Subject Areas : journal of New MaterialsFarzane Mohammadkhani 1 , Sirous Khorram 2
1 - Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
2 - Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
Keywords: deposition, titanium dioxide, Plasma Electrolytic Oxidation (PEO), anodizing, Rhodamine 6G,
Abstract :
The purpose of the present work is to provide a suitable substrate for the deposition of titanium dioxide as a photocatalyst on aluminum. Due to the weak adhesion of photocatalysts to aluminum, there is no possibility of adhering photocatalysts to its surface or the lifetime is very short. For this reason, in this study, the adhesion between TiO2 and aluminum substrate is enhanced by the creation of micron pores on the substrate surface using two methods of anodizing and Plasma Electrolytic Oxidation (PEO) and the results of the two methods are compared. Experiments were carried out to investigate the dye removal over time using Rhodamine 6G aqueous solution in the presence of UV light. SEM images were also prepared from the surface of TiO2-coated aluminum substrates. The results of the study showed that the density of pores on the aluminum surface, and consequently, the dye removal in the PEO method were higher than those of conventional anodizing. In addition, although the dye removal in the PEO method is increased compared to the anodizing method, the overall process time and energy consumption in this method, especially in the pulse mode, were less than those of the anodizing method.
[1] X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer and M.L. Zheludkevich, "Plasma electrolytic oxidation coatings with particle additions–a review", Surface and Coatings Technology, Vol. 307, pp. 1165-1182, 2016.
[2] S. Aliasghari, P. Skeldon and G.E. Thompson, "Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings", Applied Surface Science, Vol. 316, pp. 463-476, 2014.
[3] V.S. Rudnev, P.V. Kharitonskii, A. Kosterov, E.S. Sergienko, E.V. Shevchenko, I.V. Lukiyanchuk, M.V. Adigamova, V.P. Morozova and I.A. Tkachenko, "Magnetism of Fe-doped Al2O3 and TiO2 layers formed on aluminum and titanium by plasma-electrolytic oxidation", Journal of Alloys and Compounds, Vol. 816, 152579, 2020.
[4] D.V. Bavykin, K.E. Redmond, B.P. Nias, A.N. Kulak and F.C. Walsh, "The effect of ionic charge on the adsorption of organic dyes onto titanate nanotubes", Australian journal of chemistry, Vol. 63, pp. 270-275, 2010.
[5] S. Zhang, "Preparation of controlled-shape ZnS microcrystals and photocatalytic property", Ceramics international, Vol. 40, pp. 4553-4557, 2014.
[6] S. Rajoriya, S. Bargole and V. K. Saharan, "Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway", Ultrasonics sonochemistry, Vol. 34, pp. 183-194, 2017.
[7] B. Li and H. Cao, "ZnO@ graphene composite with enhanced performance for the removal of dye from water", Journal of Materials Chemistry, Vol. 21, pp. 3346-3349, 2011.
[8] X. Chong, B. Zhao, R. Li, W. Ruan and X. Yang, "Photocatalytic degradation of rhodamine 6G on Ag modified TiO2 nanotubes: surface-enhanced Raman scattering study on catalytic kinetics and substrate recyclability", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 481, pp. 7-12, 2015.
[9] R. Kaur, K. Vellingiri, K. H. Kim, A. K. Paul and A. Deep, "Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite", Chemosphere, Vol. 154, pp. 620-627, 2016.
[10] B. Barrocas, S. Sério, A. Rovisco, Y. Nunes and M. M. Jorge, "Removal of rhodamine 6G dye contaminant by visible light driven immobilized Ca1 xLnxMnO3 (Ln= Sm, Ho; 0.1 x 0.4) photocatalysts", Applied Surface Science, Vol. 360, pp. 798-806, 2016.
[11] S. Ganesan, M. Amirthalingam, P. Arivalagan, S. Govindan, S. Palanisamy, A. P. Lingassamy, and V. K. Ponnusamy, "Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique", Journal of environmental management, Vol. 245, pp. 409-417. 2019.
[12] Y. Bayrak and R. Uzgör, "Kinetic and Thermodynamics of Remazol Brilliant Blue R Adsorption", Asian Journal of Chemistry, Vol. 25, pp. 2013.
[13] N. Negishi, Y. Miyazaki, S. Kato and Y. Yang, "Effect of HCO3− concentration in groundwater on TiO2 photocatalytic water purification”, Applied Catalysis B: Environmental, Vol. 242, pp. 449-459, 2019.
[14] N. Negishi, M. Sugasawa, Y. Miyazaki, Y. Hirami and S. Koura, "Effect of dissolved silica on photocatalytic water purification with a TiO2 ceramic catalyst", Water research, Vol. 150, pp. 40-46, 2019.
[15] C. Belver, J. Bedia, M.A. Alvarez-Montero and J.J. Rodriguez, "Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures, Catalysis Today, Vol. 266, pp. 36-45, 2016.
[16] K. Wetchakun, N. Wetchakun and S. Sakulsermsuk, "An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2-and ZnO-based photocatalysts used in suspension photoreactors", Journal of industrial and engineering chemistry, Vol. 71, pp. 19-49, 2019.
[17] N. Tadić, S. Stojadinović, N. Radić, B. Grbić and R. Vasilić, "Characterization and photocatalytic properties of tungsten doped TiO2 coatings on aluminum obtained by plasma electrolytic oxidation", Surface and Coatings Technology, Vol. 305, pp. 192-199, 2016.
[18] M. N. Ghazzal, H. Kebaili, M. Joseph, D.P. Debecker, P. Eloy, J. De Coninck and E.M. Gaigneaux, "Photocatalytic degradation of Rhodamine 6G on mesoporous titania films: combined effect of texture and dye aggregation forms”, Applied Catalysis B: Environmental, Vol. 115, pp. 276-284, 2012.
[19] N. M. Ghazzal, N. Chaoui, E. Aubry, A. Koch and D. Robert, "A simple procedure to quantitatively assess the photoactivity of titanium dioxide films”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 215, pp. 11-16, 2010.
[20] S. Stojadinović, N. Tadić, N. Radić, B. Grbić and R. Vasilić, "Effect of Tb3+ doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium", Surface and Coatings Technology, Vol. 337, pp. 279-289, 2018.
[21] Y. Yan, Y. Han, D. Li, J. Huang and Q. Lian, "Effect of NaAlO2 concentrations on microstructure and corrosion resistance of Al2O3/ZrO2 coatings formed on zirconium by micro-arc oxidation", Applied Surface Science, Vol. 256, pp. 6359-6366, 2010.
[22] M. Tang, W. Li, H. Liu and L. Zhu, "Preparation Al2O3/ZrO2 composite coating in an alkaline phosphate electrolyte containing K2ZrF6 on aluminum alloy by microarc oxidation", Applied Surface Science, Vol. 258, pp. 5869-5875, 2012.
[23] V. Shoaei-Rad, M. R. Bayati, F. Golestani-Fard, H. R. Zargar and J. Javadpour, "Fabrication of ZrO2–Al2O3 hybrid nano-porous layers through micro arc oxidation process", Materials Letters, Vol. 65, pp. 1835-1838, 2011.
[24] ب. قربانیان، م. تجلی، م. موسوی خوئی و ح. توکلی، "کاربرد روش سطح پاسخ در بهینهسازی ترکیب شیمیایی و سختی پوشش اکسید آلومینیومی ایجاد شده به روش پلاسمای الکترولیتی،" فصلنامه علمی-پژوهشی مواد نوین، جلد 9، شماره 4، ص 82-69، تابستان 1398.
[25] A. Bahramian, K. Raeissi and A. Hakimizad, "An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating", Applied Surface Science, Vol. 351, pp. 13-26, 2015.
[26] A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. C. Bernard, N. Spyrellis and P. Falaras, "Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques", Journal of materials processing technology, Vol. 196, pp. 243-248, 2008.
[27] L. Tasseroul, C. A. Páez, S. D. Lambert, D. Eskenazi, and B. Heinrichs, "Photocatalytic decomposition of hydrogen peroxide over nanoparticles of TiO2 and Ni (II)-porphyrin-doped TiO2: A relationship between activity and porphyrin anchoring mode", Applied Catalysis B: Environmental, Vol. 182, pp. 405-413, 2016.
[28] P. D. Talap, "Self–aggregation of Rhodamine–6G in aqueous medium and aqueous solution of urea", J Archives Appl Sci Res, Vol. 4, pp. 826-830, 2012.
[29] S. Allahveran and A. Mehrizad, "Polyaniline/ZnS nanocomposite as a novel photocatalyst for removal of Rhodamine 6G from aqueous media: Optimization of influential parameters by response surface methodology and kinetic modeling", Journal of Molecular Liquids, Vol. 225, pp. 339-346, 2017.
[30] M. D. L. R. Peralta, M. Sánchez-Cantú, E. Puente-López, E. Rubio-Rosas and F. Tzompantzi, "Evaluation of calcium oxide in Rhodamine 6G photodegradation", Catalysis Today, Vol. 305, pp. 75-81, 2018.
_||_