Chemical reduction synthesis of copper nanoparticles in aqueous media in present of maleic acid and polyvinylpyrrolidone (PVP)
Subject Areas : journal of New Materials
1 - استادیار، گروه شیمی، واحد مرودشت، دانشگاه آزاد اسلامی ، مرودشت، ایران
Keywords: chemical reduction, copper nanoparticles, hydrazine hydrate, cis-butenedioic acid, polyvinylpyrrolidone (PVP), aqueous media,
Abstract :
The present investigation reports, novel synthesis of copper nanoparticles with controlled size and shape in an aqueous medium via chemical reduction. These syntheses accomplished using hydrazin hydrate as a reducing agent, cis-butenedioic acid or Maleic acid as the surfactant and polyvinylpyrrolidone (PVP) as a capping agent. The input of extra inert gases was not necessary and this method is very simple and green. Some reaction parameters, such as amount of reactants or surfactant, pH, reaction time or rate and amount of reduction reagent, were effective character for control in the size and shape of the nanoparticles. By the analysis of UV–Vis absorption spectrum, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX), the resultant particles were confirmed to be pure Cu with a face-centered cubic (FCC) structure. Particle morphology was characterized using Fuel emission electron microscopy (FESEM) and transmission electron microscopy (TEM). The synthesis method reported in this work might be helpful for the large-scale production of Cu nanoparticles.
1- M. Salavati-Niasari, F. Davar, N. Mir," Synthesis and characterization of metallic copper nanoparticles via thermal decomposition "Polyhedron Vol 27 ,pp 3514–3518, 2008.
2- J. N. Solanki, R. Sengupta, Z.V.P. Murthy"Synthesis of copper sulphide and copper nanoparticles with microemulsion method" Solid State Sci.Vol 12 , pp1560–1566, 2010.
3- T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, M.C. Dang " Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method " Adv. Nat. Sci., Nanosci. Nanotechnol. Vol 2, pp 015009-015015, 2011.
4- F. Ebrahimzadeh, K. Z. Fung, " One-pot synthesis of size and shape controlled copper nanostructures in aqueous media and their application for fast catalytic degradation of organic dyes" J. Chem. Res., Vol 40, pp 552–557, 2017.
5- Y. Lee, J. Choi, K. J. Lee, N. E. Stott, D. Kim, "Large-scale synthesis of copper nanoparticles by chemically controlled reduction for application of inkjet-printed electronics" Nanotechnology J. Vol 19 , pp 415-604, 2008.
6- K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel," Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water" J. Am. Chem. Soc. Vol 123 ,pp 7797-7803. 2001.
7. H. Ohde, F. Hunt, C. M. Wai," Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion" Chem. Mater. Vol 13, pp 4130-4135, 2001.
8- Y. Zhao, J. J Zhu, J. M Hong, N. Bian, H. Y. Chen " Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with ccontrollable morphology " Eur. J. Inorg. Chem Vol 20, 4072–4080, 2004.
9- H. Zhu, C. Zhang, Y. Yin," “Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size," Nanotechnology Vol 16, pp 3079-3083, 2005.
10- S. Sheibani, A. Ataie, S. Heshmati-Manesh " Role of process control agent on synthesis and consolidation behavior of nano-crystalline copper produced by mechano-chemical route" J. Alloys Compd. Vol 465,pp 78-82, 2008.
11- S. Magdassi, M. Grouchko , A. Kamyshny " Review copper nanoparticles for printed electronics: routes towards achieving oxidation" Stability Materials Vol 3, pp 4626-4638; 2010.
12- K. B. Male, S. Hrapovic, Y. Liu, D. Wang, J. H.T Luong "Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes" Vol 516, pp 35–41, 2004 .
13- N. Cioffi , L. Torsi , N. Ditaranto , G. Tantillo , L. Ghibelli , L. Sabbatini , T. Bleve-Zacheo , M. D'Alessio , P. G. Zambonin, E. Traversa "Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties" Chem. Mater., Vol 17, pp 5255–5262, 2005.
14- L. Songa, M. G. Vijver, W. J.G.M. Peijnenburga, T. S. Galloway, C.R. Tyler" A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish" Vol 139, pp 181–189, 2015.
15- P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J. D. Evans, C. J. Doonan. Application of metal and metal oxide nanoparticles @ MOFs pp 237–254, 2016.
16- A. Umer, S. Naveed, N, Ramazan "Selection of a suitable method for the synthesis of copper nanoparticles "NANO: Brief Reports and Reviews Vol. 7,pp 1230005 -1230023, 2012.
17- Y. H. Wang, P. L. Chen and M. H. Liu, "Synthesis of well-dened copper nanocubes by a one-pot solution process" Nanotechnology Vol 17,pp 6000-6006, 2006.
18- S. Takayama, G. Link, M. Sato , M. Thumm,"Microwave sintering of metal powder compacts, in Proc. Fourth World Congress on Microwave and Radio Frequency Applications," eds. R. L. Schulz and D. C. Folz (The Microwave Working Group Ltd., Arnold, Maryland, pp. 311-318,2004.
19- L. Y. Chu, Y. Zhuo, L. Dong, L. Li , M. Li, " Controlled synthesis of various hollow Cu nano/micro structures via a novel reduction route "Adv. Funct. Mater. Vol 17 pp 933-938, 2007.
20- L.D. Partain, R.A. Schneider, L.F. Donaghey, P.S. Mcleod, " Surface chemistry of CuxS and CuxS/CdS determined from x‐ray photoelectron spectroscopy" J. Appl. Phys. Vol 57, pp 5056, 1985.
21- N.A. Dhas, C.P. Raj, A. Gedanken," Synthesis, characterization, and properties.
_||_