1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) as a highly efficient catalyst for the production of fluorescent 3H-imidazo[4,5-a]acridine-11-carbonitriles
Subject Areas :Mehrdad Mazrouei 1 , Mehdi Pordel 2 , Abolghasem Davoodnia 3 , S. Ali Beyramabadi 4
1 - Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 - Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
3 - Department of Chemistry, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad.
4 - Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Keywords: DBU, Catalyst, Imidazo[4, 5-a]acridine, Nucleophilic substitution of hydrogen ,
Abstract :
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), an amidine compound, is widely utilized in organic synthesis as a catalyst, complexing ligand, and non-nucleophilic base. Its applications include serving as a catalyst, a resin curing agent, and for separating fullerenes in conjunction with trimethylbenzene. On the other hand, acridine derivatives, a type of nitrogen heterocycle, are used in producing dyes and drugs. Some are efficient fluorescent chemosensors for metal ions and valuable stains for cell cycle determination. Combining acridine with the imidazole nucleus may enhance their properties. In this study, the synthesis of 3H-imidazo[4,5-a]acridine-11-carbonitriles was achieved by reacting 1-alkyl-5-nitro-1H-benzoimidazoles with 2-(4-methoxyphenyl)acetonitrile and benzyl cyanide, involving nucleophilic substitution of hydrogen. Notably, the catalytic influence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) remarkably led to the high yields of the synthesized compounds. Structural verification of the synthesized dyes was accomplished through comprehensive physical spectral and analytical data analysis.
1. Yaneva Z, Ivanova D, Nikolova N, Toneva M. Organic dyes in contemporary medicinal chemistry and biomedicine. I. From the chromophore to the bioimaging/bioassay agent. Biotechnology & Biotechnological Equipment. 2022 Dec 31;36(1):1-4.
2. Lee SC, Park S, So H, Lee G, Kim KT, Kim C. An acridine-based fluorescent sensor for monitoring ClO− in water samples and zebrafish. Sensors. 2020 Aug 23;20(17):4764.
3. Lee LC, Lo KK. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chemical Reviews. 2024 Jul 25.
4. Wang C, Fu J, Yao K, Xue K, Xu K, Pang X. Acridine-based fluorescence chemosensors for selective sensing of Fe3+ and Ni2+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018 Jun 15;199:403-11.
5. Dai Y, Xu K, Li Q, Wang C, Liu X, Wang P. Acridine-based complex as amino acid anion fluorescent sensor in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016 Mar 15;157:1-5.
6. Visscher A, Bachmann S, Schnegelsberg C, Teuteberg T, Mata RA, Stalke D. Highly selective and sensitive fluorescence detection of Zn 2+ and Cd 2+ ions by using an acridine sensor. Dalton Transactions. 2016;45(13):5689-99.
7. Sajid H, Ayub K, Arshad M, Mahmood T. Highly selective acridinium based cyanine dyes for the detection of DNA base pairs (adenine, cytosine, guanine and thymine). Computational and Theoretical Chemistry. 2019 Sep 1;1163:112509.
8. Anju K, Sumita A, Gayathri S, Vasanthi R, Rajendran K. Fluorescence spectral studies on the interaction of alanine and valine with resorcinol-based acridinedione dyes in aqueous solution: a comparative study with glycine. ACS omega. 2019 Jul 18;4(7):12357-65.
9. Nunes MC, dos Santos Carlos F, Fuganti O, da Silva LA, Ribas HT, Winnischofer SM, Nunes FS. A Facile Preparation of a New Water-Soluble Acridine Derivative and Application as a Turn-off Fluorescence Chemosensor for Selective Detection of Hg2+. Journal of Fluorescence. 2020 Mar;30:235-47.
10. dos Santos Carlos F, da Silva LA, Zanlorenzi C, Nunes FS. A novel macrocycle acridine-based fluorescent chemosensor for selective detection of Cd2+ in Brazilian sugarcane spirit and tobacco cigarette smoke extract. Inorganica Chimica Acta. 2020 Aug 1;508:119634.
11. Chemate S, Erande Y, Mohbiya D, Sekar N. Acridine derivative as a “turn on” probe for selective detection of picric acid via PET deterrence. RSC advances. 2016;6(87):84319-25.
12. Baig MZ, Oh H, Son YA. Highly visible bis-heterocyclic acridinium and xanthenium-based dyes: Synthesis, AIEE, and modacrylic dyeing. Dyes and Pigments. 2022 Apr 1;200:110159.
13. Boddu SK, Ur Rehman N, Mohanta TK, Majhi A, Avula SK, Al-Harrasi A. A review on DBU-mediated organic transformations. Green Chemistry Letters and Reviews. 2022 Jul 3;15(3):765-95.
14. Muzart J. DBU: a reaction product component. ChemistrySelect. 2020 Oct 8;5(37):11608-20.
15. Larrivée-Aboussafy C, Jones BP, Price KE, Hardink MA, McLaughlin RW, Lillie BM, Hawkins JM, Vaidyanathan R. DBU catalysis of N, N′-carbonyldiimidazole-mediated amidations. Organic Letters. 2010 Jan 15;12(2):324-7.
16. Preston P N (1980) The Chemistry of Heterocyclic Compounds, Benzimidazoles and Cogeneric Tricyclic Compounds, John Wiley & Sons, Part 1, Volume 40, pp 87-105
17. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, et al. (1998) Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh PA
18. Maroofi V, Pordel M, Chegini H, Ramezani S. Synthesis, Spectral Studies and Quantum-Chemical Investigations on the Powerful Fluorophores: Imidazo [4, 5-a] acridines. Journal of fluorescence. 2015 Sep;25:1235-43.
19. Daghigh LR, Pordel M, Davoodnia A, Jajarmi M. Synthesis, antiviral, and cytotoxic investigation of imidazo [4, 5-a] acridones. Medicinal Chemistry Research. 2015 Nov;24:3912-9.
20. Alipoor H, Pordel M, Morsali A. Synthesis, characterisation, optical properties and theoretical calculations of a new fluorescent heterocyclic system: 3 H-benzo [a] pyrazolo [3, 4-j] acridine. Journal of Chemical Research. 2017 Jul;41(7):371-5.
21. Alipoor H, Pordel M, Morsali A. 3 H-Benzo [a] imidazo [4, 5-j] acridine as a new fluorescent heterocyclic system: synthesis, spectral studies, and quantum chemical investigation. Russian Journal of Organic Chemistry. 2017 Oct;53:1586-92.
22. Faramarzi M, Pordel M, Morsali A. Synthesis, Antiviral, Antibacterial, and Cytotoxicity Assessment of Some 3 H-Benzo [a] imidazo [4, 5-j] acridines and 3 H-Benzo [a] pyrazolo [3, 4-j] acridines. Russian Journal of Organic Chemistry. 2020 Aug;56:1438-45.
23. Toosi MR, Pordel M, Bozorgmehr MR. New Imidazo [4, 5-a] Acridine: Synthesis and Studying the Molecular Dynamics Simulation of Its Interaction with the Topoisomerase Enzyme. Journal of Chemical Health Risks. 2024 Mar 1;14(1):159-66.
24. Mohammadi J, Pordel M, Bozorgmehr MR. Imidazo [4, 5-a] acridines and Pyrazolo [4, 3-a] acridines as a New Class of Urease Inhibitors: Synthesis, In Vitro Interactions, and Molecular Docking Studies. Pharmaceutical Chemistry Journal. 2024 Apr 15:1-1.
25. Zonozi F, Beyramabadi SA, Pordel M, Morsali A. Kinetics and mechanism of producing 3, 8-dimethyl-3 H-imidazo [4, 5-a] acridine-11-carbonitrile: a DFT investigation. Research on Chemical Intermediates. 2017 Mar;43:1829-46.
26. Zonozi F, Pordel M, Beyramabadi SA, Morsali A. Theoretical investigation on the kinetics and mechanism of the synthesis of fluorescent 3, 8-disubstituted-3H-imidazo [4, 5-a] acridine-11-carbonitriles. Progress in Reaction Kinetics and Mechanism. 2016 Nov;41(4):365-70.
27. Zonozi F, Pordel M, Beyramabadi SA, Morsali A. Theoretical and experimental study of solvent effects on the producing of powerful fluorophores 3, 8-disubstituted-3h-imidazo [4, 5-a] acridine-11-carbonitriles. Heterocyclic Letters. 2018 Jan 1;8(3):587-92.