In-vitro effect of iron sulfate, zinc sulfate and copper sulfate treatments on the morphophytochemical characteristics of Chamaecostus cuspidatus Nak
Subject Areas : Medicinal Plantshajar motamedi sharak 1 , Mohsen Sanikhani 2 , Azizollah Kheiry 3 , Nayer Mohammadkhani 4
1 - Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 - Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 - Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
4 - Shahid Bakeri Higher Education Center of Miandoab, University of Urmia, Urmia, Iran
Keywords: chlorophyll, flavonoid, Micronutrient, tissue culture, total phenol,
Abstract :
To investigate the effects of varying concentrations of iron sulfate, zinc sulfate, and copper sulfate micronutrients in Murashige and Skoog (MS) medium on the morphological and phytochemical characteristics of the insulin plant, an experiment was conducted based on a completely randomized design in the tissue culture laboratory of the Faculty of Agriculture at the University of Zanjan. Nodal explants were cultured for 12 weeks in MS medium containing 1 mg/l-1 of benzyl adenine and 0.6 mg/l-1 of naphthalene acetic acid. After the initial 12 weeks, the explants were treated for an additional 4 weeks with different concentrations of iron sulfate (0, 27.8, 41.7, 55.6 mg/l -1), zinc sulfate (0, 8.6, 17.2, 25.8 mg/l -1), and copper sulfate (0, 0.025, 0.05, 0.1 mg/l -1). Following this period, growth and phytochemical indices were evaluated. The experimental results indicated that the treatments significantly affected the studied traits at the 1% probability level. According to the average comparisons, copper sulfate at a concentration of 0.1 mg/l -1 produced the highest number of leaves (7.33), shoot height (9.20 cm), root length (14.67 cm), fresh weight (26.1 g), and shoot dry weight (180 mg), along with a fresh weight of 0.58 g and root dry weight of 146.67 mg. Furthermore, a significant increase in chlorophyll a and total chlorophyll was observed with zinc sulfate at a concentration of 25.8 mg/l-1 and copper sulfate at 0.1 mg/l-1. The highest total carotenoid content was recorded at 17.2 mg/l of zinc sulfate and 0.1 mg/l of copper sulfate. In conclusion, the concentration of 0.1 mg/l-1 of copper sulfate had the greatest effect on morphological traits and photosynthetic pigments, and the levels of 17.2 mg/l-1 of zinc sulfate and 0.05 mg/l -1 of copper sulfate had a significant increase in total phenolics content and antioxidant activity. The findings of this research suggest that optimal concentrations of iron, zinc, and copper sulfates can effectively enhance growth and productivity in the insulin medicinal plant.
Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Wijaya, L., Alam, P., Kumar, A. and Ashraf, M. (2018). Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. Journal of Plant Interactions, 9145(1), 151-162.
Akowuah, G. A., Ismail, Z., Norhayati, I. and Sadikun, A. (2005). The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chemistry, 93(2), 311-317.
Alam, N., Anis, M., Javed, S. B. and Alatar, A. A. (2020). Stimulatory efect of copper and zinc sulphate on plant regeneration, glutathione S transferase analysis and assessment of antioxidant activities in Mucuna pruriens L. (DC). Plant Cell, Tissue and Organ Culture (PCTOC), 141, 155–166.
Alvarez, M. A. (2014). Plant Biotechnology for Health: From Secondary Metabolites to Molecular Farming. Springer, Buenos Aires.
Aravind, P. and Prassad, M. N. V. (2004). Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a fresh water macrophyte. Plant Science, 166, 1321-1327.
Badiaa, O., Yssaad, H. A. R. and Topcuoglu, B. (2020). Effect of heavy metals (copper and zinc) on proline, polyphenols and flavonoids content of tomato (Lycopersicon esculentum Mill). Plant Archives Volume 20 No. 1, 2125-2137.
Bityutskii, N., Pavlovic, J., Yakkonen, K. and Maksimovic, V. (2014). Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant Physiology and Biochemistry, 74, 205-211.
Bota, C. and Deliu, C. (2011). The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia, 59, 113–118.
Broadley, M., Brown, P., Cakmak, I., Rengel, Z. and Zhao, F. (2012). Function of Nutrients: Micronutrients. In: P. Marschner (Ed.) Marschner’s Mineral Nutrition of Higher Plants. 3rd Ed Academic Press, London. Pp, 191-248.
Chang, Y. L., Kim, D. O., Lee, K. W., Lee, H. J. and Lee, C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and food chemistry, 50(13), 3713-3717.
Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486.
Deo, B. and Nayak, P. K. (2011). Study of copper phytotoxicity on in vitro culture of Musa acuminata cv. “Bantala”. Sustainable Development, 3, 136–140.
Fatima, N., Ahmad, N. and Anis, M. (2011). Enhanced in vitro regeneration and change in photosynthetic pigments, biomass and proline content in Withania somnifera L. (Dunal) induced by copper and zinc ions. Plant Physiology and Biochemistry, 49, 1465-1471.
George, E. F., Hall, M. A. and Klerk, G. J. (2008). Plant Propagation by Tissue culture. Springer plus, New York.
Hegde, P. K., Rao, H. A. and Rao, P. N. (2014). A review on Insulin plant (Costus igneus Nak). Pharmacognosy Review, 8(15), 67-72.
Ibiang, Y. B., Innami, H. and Sakamoto, K. (2018). Effect of excess zinc and arbuscular mycorrhizal fungus on bioproduction and trace element nutrition of Tomato (Solanum lycopersicum L. cv. Micro-Tom). Soil Science and Plant Nutrition, 00(00), 1-10.
Ibrahim, S. M., Hashish, K. I., Taha, L. S., Mazhar, A. A. and Kandil, M. M. (2016). In vitro culture protocol, micropropagation, acclimatization and chemical constituents of Spathiphyllum cannifolium plant under copper concentration effect. International Journal of PharmTech Research, 9, 33–41.
Jain, P., Kachhwaha, S. and Kothari, S. L. (2009). Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium. Scientia Horticulturae, 119, 315–319.
Javed, S. B., Alatar, A. A., Basahi, R., Anis, M., Faisal, M. and Husain, F. M. (2017). Copper induced suppression of systemic microbial contamination in Erythrina variegata L. during in vitro culture. Plant Cell, Tissue Organ Culture, 128, 249–258.
Jyothi, N., Priyanka, E., Tony, D. and Nadendla, R. (2015). Chamaecostus cuspidatus a short review on antidiabetic plant. Indo American Journal of Pharmaceutical Sciences, 2(7), 1110-13.
Kalpana, M. M., Anbazhagan, V. and Natarajan, D. (2010). Dhanavel, Improved micropropagation method for the enhancement of biomass in Stevia rebaudiana Bertoni. Recent Research Science Technology, 2, 008-013.
Kaur, M. and Mannan, A. (2021). In- vitro antidiabetic activity of Chamecostus cuspidatus. International Journal of Pharmacognosy, 8(12), 496-501.
Khanna, K., Jamwal, V. L., Sharma, A., Gandhi, S. G., Ohri, P., Bhardwaj, R. and Ahmad, P. (2019). Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates Cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere, 230, 628-639.
Lichtenthaler, H. K. and Wellbum, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemistry Society Transcends, 11, 591–592.
Marschner, H. (2012). In: Marschner, P., Eds. Marschner’s Mineral Nutrition of Higher Plants (Vol. 89); Academic press, London.
Mazaheri Tirani, M., Madadkar-Haghjou, M., Sulieman, S. and Ismaili, A. (2018). Comparative evaluation of zinc oxide effects on tobacco (Nicotiana tabacum L.) grown in different media. Journal of Agricultural Science and Technology, 20, 787–802.
Miguel, J. F. (2023). Influence of High Concentrations of Copper Sulfate on In Vitro Adventitious Organogenesis of Cucumis sativus L. International Journal of Plant Biology, 14, 974–985.
Miralpeix, B., Rischer, H., Häkkinen, S., Ritala, A., Seppänen-Laakso, T., OksmanCaldentey, K., Capell, T. and Christou, P. (2013). Metabolic engineering of plant secondary products: which way forward. Current Pharmaceutical Design, 19, 5622–5639.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
Ordone, A. A. L., Gomez, J. D. and Vattuone, M. A. (2008). Antioxidant activities of Sechium edule swartz extracts. Food Chemistry, 97, 452-458.
Pullagurala, V. L. R., Adisa, I. O., Rawat, S., Kalagara, S., Hernandez-Viezcas, J. A., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. (2018). ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiology Biochem, 132, 120–127.
Rehman, M., Hamzah Saleem, M., Fahad, S., Maqbool, Z., Peng, D., Deng, G. and Liu, K. (2021). Medium nitrogen optimized Boehmeria nivea L. growth in copper contaminated soil. Chemosphere, 266- 128972.
Ruiz-Torres, N., Flores-Naveda, A., Barriga-Castro, E. D. Camposeco-Montejo, N. Ramírez-Barrón, S. Borrego-Escalante, F. Niño-Medina, G., Hernández-Juárez, A., Garza-Alonso, C., Rodríguez-Salinas, P. and García-López, J. I. (2021). Zinc Oxide Nanoparticles and Zinc Sulfate Impact Physiological Parameters and Boosts Lipid Peroxidation in Soil Grown Coriander Plants (Coriandrum sativum). Molecules, 26, 1998.
Seliem, M. K., El-Mahrouk, M. E., El-Banna, A. N., Hafez, V. M. and Dewir, V. H. (2021). Micropropagation of Philodendron selloum: Influence of copper sulfate on endophytic bacterial contamination, antioxidant enzyme activity, electrolyte leakage, and plant survival. South African Journal of Botany, 139, 230-240.
Singh, O. S., Pant, N. C., Laishram, M. L., Tewari, R. D., Joshi, k. and Pandey, C. (2018). Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). Journal of Pharmacognosy and Phytochemistry, 7(2), 3433-3439.
Trettel, J. R., Gazim, Z. C., Gonçalves, J. E., Stracieri, J. and Magalhães, H. M. (2018). Effects of copper sulphate (CuSO4) elicitation on the chemical constitution of volatile compounds and the in vitro development of Basil. Scientia Horticulturae, 234, 19-26.
Verma, S. K., Sahin, G., Das, A. K. and Gurel, E. (2016). In vitro plant regeneration of Ocimum basilicum L. is accelerated by zinc sulfate. In Vitro Cellular & Developmental Biology, 52, 20–27.
Wang, X. P., Li, Q. Q., Pei, Z. M. and Wang, S. C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62, 801–808.
Zhang, Q., Waheed, A., Aili, A., Xu, H., Kuerban, A., Muhammad, M. and Sajjad Ali, S. (2024). Copper sulfate-induced stress in Spinach: Metabolic pathway disruption and plant response. Scientia Horticulturae, Volume 337: 113575, ISSN 0304-4238.