Synthesis and Characterization of TiB2 Nanoparticles by Sol-Gel Method
Subject Areas :Abolhassan Najafi 1 , Gholamreza Khalaj 2 , Farzad Soleymani 3
1 - Department of Materials Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.
2 - Department of Materials Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.
3 - Department of Engineering, Payame Noor Unvierstiy, Tehran, Iran
Keywords: titanium diboride, synthesis, sol-gel, nanoparticles, mesoporous,
Abstract :
In this research, TiB2 particles were synthesized through the sol-gel method in nanometer dimensions. First, sol was prepared in the four-component system of alkoxide-dispersant-water-solvent based on the sol-gel chemical process under acidic conditions. Titanium tetraisopropoxide and trimethyl borate were used as raw materials. After the process of hydrolysis and gel formation and following heat treatment, TiB2 nano powder product was prepared. SEM, TEM, DTA/TG, XRD, Raman, and FTIR analysis methods were used to evaluate the mechanism of product formation in the sol-gel process. FTIR data showed that the powder prepared at the temperature of 900 ºC has bonds containing boron and titanium, and bonds containing carbon were identified in the wave number range of 600-1650 cm-1. DTA analysis showed that the initial buds of TiB2 particles were formed in the range of 1300 ºC. The formation of the TiB2 crystalline phase was confirmed in X-ray diffraction pattern studies, and this phase was completed by increasing the temperature to 1430 ºC. The surface analysis of the synthesized particles revealed the specific surface area of 153.42 m²/g with porous surfaces and meso dimensions. Raman results showed the presence of Ti-B in the final product. PSA results showed that the particle size distribution is below 50 nm. The microstructure images of SEM and TEM showed that the synthesized TiB2 particles were in the range below 100 nm with a narrow and uniform distribution range.
[1] A. Rabiezadeh, A. Ataie & A. M. Hadian, "Sintering of Al₂O₃–TiB₂ Nano-Composite Derived from Milling Assisted Sol–Gel Method", International Journal of Refractory Metals and Hard Materials, vol. 33, pp. 58-64, 2012.
[2] S. Guo, "Densification of ZrB₂-Based Composites and Their Mechanical and Physical Properties: A Review", Journal of the European Ceramic Society, vol. 29, no. 6, pp. 995-1011, 2009.
[3] M. Rahmani-Azad, A. Najafi, N. Rahmani-Azad & G. Khalaj, "Improvement of ZrB₂ Nanopowder Synthesis by Sol-Gel Method via Zirconium Alkoxide/Boric Acid Precursors", Journal of Sol-Gel Science and Technology, vol. 103, no. 1, pp. 87-96, 2022.
[4] S. Mayakannan, R. Rathinam, R. Saminathan, R. Deepalakshmi, M. Gopal, J. Hillary, S. Nanthakumar, V. Y. Ganvir & P. Singh, "Analysis of Spectroscopic, Morphological Characterization and Interaction of Dye Molecules for the Surface Modification of TiB₂ Nanoparticles", Journal of Nanomaterials, vol. 2022, 2022.
[5] W. Tang, Z. Zheng, Y. Wu, J. Wang, L. Jun & J. Liu, "Synthesis of TiB₂ Nanocrystalline Powder by Mechanical Alloying", Transactions of Nonferrous Metals Society of China, vol. 16, no. 3, pp. 613-617, 2006.
[6] Ľ. Bača & N. Stelzer, "Adapting of Sol–Gel Process for Preparation of TiB₂ Powder from Low-Cost Precursors", Journal of the European Ceramic Society, vol. 28, no. 5, pp. 907-911, 2008.
[7] Z. Qin, J. Zhang, J. Wang & C. Ke, "Novel Sustainable Silicothermic Synthesis of Phase-Pure TiB₂ Fine Powder", Journal of Alloys and Compounds, vol. 834, p. 155213, 2020.
[8] G. Brahma Raju, A. Mukhopadhyay, B. Basu, S. Kumar & Thimmappa, "Review on Ultra-High Temperature Boride Ceramics", Ceramics International, vol. 111, 2020.
[9] J. Yu, M. Li, Y. Zhang, H. Gong & L. Zhou, "Synthesis of TiB₂ Powders via Carbothermal Reduction of TiO₂, HBO₂, and Carbon Black", Ceramics International, vol. 42, no. 4, pp. 5512-5516, 2016.
[10] J. Yu, M. Li, A. Abbas, Y. Zhang, H. Gong, X. Wang, L. Zhou & H. Liu, "Carbothermal Reduction Synthesis of TiB₂ Ultrafine Powders", Ceramics International, vol. 42, no. 3, pp. 3916-3920, 2016.
[11] A. Nozari, A. Ataie & S. Heshmati-Manesh, "Synthesis and Characterization of Nano-Structured TiB₂ Processed by Milling Assisted SHS Route", Materials Characterization, vol. 73, pp. 96-103, 2012.
[12] L. Ma, J. Yu, X. Guo, B. Xie, H. Gong, Y. Zhang, Y. Zhai & X. Wu, "Preparation and Sintering of Ultrafine TiB₂ Powders", Ceramics International, vol. 44, no. 4, pp. 4491-4495, 2018.
[13] Z. Fu & R. Koc, "Sintering Properties of TiB₂ Synthesized from Carbon Coated Precursors", in Mechanical Properties and Performance of Engineering Ceramics and Composites XI, Hoboken: John Wiley & Sons, pp. 171-182, 2017.
[14] V. Moradi, L. Nikzad, I. Mobasherpour & M. Razavi, "Low Temperature Synthesis of Titanium Diboride by Carbothermal Method", Ceramics International, vol. 44, pp. 19421-19426, 2018.
[15] S. Song, T. Zhang, C. Xie, J. Zhou, R. Li & Q. Zhen, "Growth Behavior of TiB₂ Hexagonal Plates Prepared via a Molten-Salt-Mediated Carbothermal Reduction", Journal of the American Ceramic Society, vol. 103, pp. 719-723, 2020.
[16] V. B. O. P. Raman, O. P. Bahl & U. Dhawan, "Synthesis of Silicon Carbide through the Sol-Gel Process from Different Precursors", Journal of Materials Science, vol. 30, pp. 2686-2693, 1995.
[17] F. Sharifi, Z. Mahmoodi, S. M. Mesgari-Abbasi, A. Najafi & G. Khalaj, "Synthesis and Characterization of Mesoporous TiC Nanopowder/Nanowhisker with Low Residual Carbon Processed by Sol–Gel Method", Journal of Materials Research and Technology, vol. 22, pp. 2462-2472, 2023.
[18] O. Fakhimi, A. Najafi & G. Khalaj, "A Facile Route to Obtain Al₂O₃ Nanopowder via Recycling Aluminum Cans by Sol-Gel Method", Materials Research Express, vol. 7, no. 4, p. 045008, 2020.
[19] Y. Tong, Z. Hu, M. Wang, C. Yang & J. Xu, "Higher Ablative Resistance Performance of CF-ZrO₂/ZrC Composites by an In-Situ Sol-Gel Method", Composites Science and Technology, vol. 227, p. 109625, 2022.
[20] S. N. Katea, L. Riekehr & G. Westin, "Synthesis of Nano-Phase ZrC by Carbothermal Reduction Using a ZrO₂–Carbon Nano-Composite", Journal of the European Ceramic Society, vol. 41, no. 1, pp. 62-72, 2021.
[21] A. Najafi, M. Khoeini, G. Khalaj & A. Sahebgharan, "Synthesis of Silver Nanoparticles from Electronic Scrap by Chemical Reduction", Materials Research Express, vol. 8, no. 12, p. 125009, 2021.
[22] F. Zhan, H. Zhang, K. Xv, M. Zhu, Y. Zheng & P. La, "Review on Preparation of Zirconium Carbide and Boride Ceramic Powders", Journal of Ceramic Processing Research, vol. 23, no. 5, pp. 694-708, 2022.
[23] F. Arianpour, F. Kazemi & H. R. Rezaie, "Thermodynamic Study of Zirconium Carbide Synthesis via a Low-Temperature Pyrovacuum Method", Journal of the Australian Ceramic Society, vol. 56, pp. 969-977, 2020.
[24] Y. Zhang & H. Sun, "Effects of Gelation Temperature, Water, Polyethylene Glycol on Morphology of ZrB₂ Particles Synthesized by Sol-Gel Method", Journal of Ceramic Processing Research, vol. 19, no. 4, pp. 355-359, 2018.
[25] A. Najafi, F. Golestani-Fard, H. R. Rezaie & N. Ehsani, "Synthesis and Characterization of Silicon Carbide Nano Powder by Sol-Gel Processing", Iranian Journal of Materials Science & Engineering, vol. 8, no. 2, 2011.
[26] M. Arabi, A. Ostovan, J. Li, X. Wang, Z. Zhang, J. Choo & L. Chen, "Molecular Imprinting: Green Perspectives and Strategies", Advanced Materials, vol. 33, no. 30, p. e2100543, 2021.
[27] M. Arabi, A. Ostovan, A. R. Bagheri, X. Guo, J. Li, J. Ma & L. Chen, "Hydrophilic Molecularly Imprinted Nanospheres for the Extraction of Rhodamine B Followed by HPLC Analysis: A Green Approach and Hazardous Waste Elimination", Talanta, vol. 215, p. 120933, 2020.
[28] A. Ostovan, M. Arabi, Y. Wang, J. Li, B. Li, X. Wang & L. Chen, "Greenificated Molecularly Imprinted Materials for Advanced Applications", Advanced Materials, vol. 34, no. 42, p. e2203154, 2022.
[29] C. Zeng, K. Tong, M. Zhang, Q. Huang, Z. Su, C. Yang ... & W. Song, "The Effect of Sol-Gel Process on the Microstructure and Particle Size of ZrC–SiC Composite Powders", Ceramics International, vol. 46, no. 4, pp. 5244-5251, 2020.
[30] Y. Miao, X. Wang, P. Firbas et al., "Ultra-Fine Zirconium Diboride Powders Prepared by a Combined Sol–Gel and Spark Plasma Sintering Technique", Journal of Sol-Gel Science and Technology, vol. 77, pp. 636-641, 2016.
[31] C. J. Brinker & G. W. Scherer, "Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing", Academic Press, 1990.
[32] G. Khalaj, F. Soleymani, F. Sharifi & A. Najafi, "Evaluation of APC Impact on Controlling Precursors Properties in the Sol for Synthesizing Meso Porous ZrC Nanopowder through Sol-Gel Process", Journal of Materials Research and Technology, vol. 26, pp. 6182-6192, 2023.
[33] A. Najafi, F. Sharifi, S. M. Mesgari-Abbasi & G. Khalaj, "Influence of pH and Temperature Parameters on the Sol-Gel Synthesis Process of Meso Porous ZrC Nanopowder", Ceramics International, vol. 48, no. 18, pp. 26725-26731, 2022.
[34] H. Zarrinpour, S. Firoozi & V. Milani, "Ignition and Chemical Mechanisms of Volume Combustion Synthesis of Titanium Diboride", Ceramics International, vol. 42, no. 9, pp. 11217-11223, 2016.
[35] A. Kamali & M. Boolurian, "Mechanical Routes in TiB₂ Synthesis", Scientific Student Congress of Material and Metallurgy, pp. 642-647, 2010.
[36] Z. Sabouri, H. Abdizadeh & H. Baharvandi, "Characterization of Barium Titanate-Bore Carbide Ceramic Nanocomposite Films by a Sol-Gel Process", 6th Iranian Ceramic Congress, pp. 1-14, 2008.
[37] I. S. Seog & C. H. Kim, "Preparation of Monodispersed Spherical Silicon Carbide by the Sol-Gel Method", Journal of Materials Science, vol. 28, pp. 3277-3282, 1993.
[38] الف. نجفی، م. خوئینی و م. امانی، "سنتز و مشخصهیابی خواص نانو ذرات مزومتخلخل سیلیکاتی توخالی با استفاده از قالب پلی استایرن"، فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 1، صفحه 45-54، 1399.
[39] الف. نجفی، غ. ر. خلج و م. رحمانی آزاد، "سنتز و مشخصه یابی نانو ذرات ZrB2 با استفاده از روش سل- ژل"، فرآیندهای نوین در مهندسی مواد، دوره 16، شماره 5، صفحه 41-52، 1401.