Determining the most suitable academic days for Ahvaz students based on the results of the climate consultant index
Subject Areas : Geography and ClimateNasrin Ordouzadeh 1 , Dr, Reza Borna 2 , Dr. Jebraeil Ghorbanian 3 , Dr.jafar Morshedi 4
1 - Nasrin Ordouzadeh: Department of Geography, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Reza Borna: Department of Geography, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Gabraeel Ghorbanian. : Department of Geography, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
4 - Jafar Morshedi. : Department of Urban Planing, Shoshtar Branh, Islamic Azad University, Shoushtar, Iran
Keywords: Climate Consultant, Desired Educational Period, Ahvaz, Student, School,
Abstract :
Education, training, and upbringing are highly complex processes. As a result, multiple factors and elements are involved in its formation. The physical environment is one of the important elements in desirable education. By providing a suitable physical environment, students will engage in learning with better mental and emotional conditions and more tranquility.In this study, the bioclimatic conditions of Ahvaz city were evaluated using climate consultant software Based on the results of these indices, a total of 12 to 15percent of the training period hours were in comfortable bioclimatic conditions. In 45 to 50percent of the study hours, the climatic conditions were warm and undesirable for students, and in 30 to 35percent of the study hours, the air temperature was below the comfort threshold. Therefore, in more than 80to 85percent of the days when students are present at school, the temperature and climatic conditions are not conducive to their learning and comfort. In this 7 to 8month period, the number of hot and cold hours is approximately equal. However, since the undesirability of cold and discomfort conditions is less than that of hot undesirable conditions, and the cost of heating is lower than the cost of cooling, it is recommended to focus the study period on cool to cold months of autumn and winter. Based on the results of the bioclimatic consultant index, from 15 to 20days in the month of Mehr and from mid-Ardibehesht month, the thermal conditions exceed the tolerance threshold of students, and their health may be at risk. It is better to remove this period from the academic calendar. However, in other months of the study period, by considering appropriate strategies in the design and construction of schools, the climatic undesirability of this period can be addressed.
1) دوستزاده، عذرا (1400). بررسی شرایط مناسب فضاهای آموزشی و فرهنگی همساز با اقلیم (مطالعه موردی: شهر بجنورد). چهاردهمین کنفرانس ملی مهندسی عمران، معماری و توسعه شهری، بابل.
2) زمردیان، زهراسادات، وپوردیهیمی، شهرام (1396). ارزیابی عملکرد حرارتی و بصری پنجره در کلاسهای درس در اقلیم شهر تهران. صفه، 27(3)، 5-24.
3) عصاری، مسعود، طیاری، حسین، وآزمون، فیروزه (1393). بررسی نقش اقلیم بر طراحی مراکز آموزشی در نواحی کویری ایران، چهارمین کنفرانس بین المللی رویکردهای نوین در نگهداشت انرژی، تهران.
4) قنبران، عبدالحمید، وحسینپور، محمد امین (1395). بررسی عوامل مؤثر در بهره وری انرژی در فضاهای آموزشی در اقلیم شهر تهران. نقش جهان - مطالعات نظری و فناوری های نوین معماری و شهرسازی، 6(3)، 51-62.
5) کریم زاده، سارا، لشکری، حسن، برنا، رضا، وولی شریعت پناهی، مجید (1400). بررسی میزان انطباق جهت معماری ساختمان های قدیم و جدید شهر سقز از منظر اقلیمی. فصلنامه جغرافیا (برنامه ریزی منطقه ای)، 11(4) 183-209.
6) مفیدی، سید مجید، فاضلی، مهدی، وفلاح، الهام (1393). الگوهای چیدمان فضا در بناهای آموزشی همساز با اقلیم معتدل و مرطوب Cf، نشریه علمی – پژوهشی انجمن علمی معماری و شهرسازی ایران، 5 (7): 83-94.
7) نتاج انصار، ژاله، برنا، رضا، ومرشدی، جعفر (1401). تدوین استراتژی های طراحی اقلیمی برای ساختمان های آموزشی در شرایط اقلیمی شهر دزفول، توسعه پایدار محیط جغرافیایی، 7 (4): 129-141.
8) Alghamdi, S., Tang, W., Kanjanabootra, S., & Alterman, D. (2022). Effect of architectural building design parameters on thermal comfort and energy consumption in higher education buildings. Buildings, 12(3), 329.
9) Allab, Y., Pellegrino, M., Guo, X., Nefzaoui, E., & Kindinis, A. (2017). Energy and comfort assessment in educational building: Case study in a French university campus. Energy and Buildings, 143, 202-219.
10) Birchmore, R., Davies, K., Etherington, P., Tait, R., & Pivac, A. (2017). Overheating in Auckland homes: testing and interventions in full-scale and simulated houses. Building Research & Information, 45(1-2), 157-175.
11) David, M., Donn, M., Garde, F., & Lenoir, A. (2011). Assessment of the thermal and visual efficiency of solar shades. Building and Environment, 46(7), 1489-1496.
12) Gaetani, I., Hoes, P. J., & Hensen, J. L. (2017). On the sensitivity to different aspects of occupant behaviour for selecting the appropriate modelling complexity in building performance predictions. Journal of Building Performance Simulation, 10(5-6), 601-611.
13) Gangrade, S., & Sharma, A. (2022). Study of thermal comfort in naturally ventilated educational buildings of hot and dry climate-A case study of Vadodara, Gujarat, India. International Journal of Sustainable Building Technology and Urban Development, 13(1), 122-146.
14) Gkloumpou, A., & Germanos, D. (2022). The importance of classroom cooperative learning space as an immediate environment for educational success. An action research study in Greek Kindergartens. Educational action research, 30(1), 61-75.
15) Huang, K. T., Huang, W. P., Lin, T. P., & Hwang, R. L. (2015). Implementation of green building specification credits for better thermal conditions in naturally ventilated school buildings. Building and Environment, 86, 141-150.
16) Humphreys, M. A. (1977). A study of the thermal comfort of primary school children in summer. Building and Environment, 12(4), 231-239.
17) Mavrogianni, A., Pathan, A., Oikonomou, E., Biddulph, P., Symonds, P., & Davies, M. (2017). Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(1-2), 119-142.
18) Milne, M., Liggett, R., & Al-Shaali, R. (2007, July). Climate consultant 3.0: A tool for visualizing building energy implications of climates. In proceedings of the Solar Conference (Vol. 1, p. 466). AMERICAN SOLAR ENERGY SOCIETY; AMERICAN INSTITUTE OF ARCHITECTS.
19) Mishra, A. K., Derks, M. T. H., Kooi, L., Loomans, M. G. L. C., & Kort, H. S. M. (2017). Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Building and Environment, 125, 464-474.
20) Omidvar, K. Alizade Shoraki, Y. Zareshahi, A., (2011), Determination of comfortable condition according to climate-environmental index in Yazd. Journal City Climate Architects, 1, 101–107.
21) Perez, Y. V., & Capeluto, I. G. (2009). Climatic considerations in school building design in the hot–humid climate for reducing energy consumption. Applied Energy, 86(3), 340-348.
22) Singh, M. K., Ooka, R., & Rijal, H. B. (2018, April). Thermal comfort in Classrooms: A critical review. In Proceedings of the 10th Windsor Conference—Rethinking Comfort, Windsor, UK (pp. 12-15).
23) Sotode Maram, K., (1999), The investigation the using of flowing nature wind for heating and cooling in various climates in Iran. Master’sThesis, Shiraz University, Shiraz, Iran.
24) Theodosiou, T. G., & Ordoumpozanis, K. T. (2008). Energy, comfort and indoor air quality in nursery and elementary school buildings in the cold climatic zone of Greece. Energy and Buildings, 40(12), 2207-2214.