Predictive Model Of The Impact Of Embodied Energy On Cultural Changes In The Operation Of Green Schools with Emphasis On The Moderating Role Of The Exterior Wall
Subject Areas : Social EvolutionsSomayeh Dowlat 1 , Fahimeh Motazadian 2 , Ghazal Safdarian 3 , Heydar Jahan bakhsh 4
1 - Department of Architecture, Pardis Branch, Islamic Azad University, Pardis, Iran
2 - Assistant Professor, Department of Architecture, Pardis Branch, Islamic Azad University, Pardis, Iran.
3 - Assistant Professor, Department of Architecture, Pardis Branch, Islamic Azad University, Pardis, Iran.
4 - Associate Professor, Department of Architecture, Tehran Branch, Payam Noor University, Tehran, Iran.
Keywords: Cultural & Climatic Changes, Current Society & Embodied Energy, Operational Energy, Social Studies, Green Schools, Predictive Model, Exterior Wall Core.,
Abstract :
Buildings have a significant impact on cultural and climatic changes due to their resource and energy consumption, a main challenge for humanity in current society. Energy in buildings has two components: embodied energy and operational energy. Scientists worldwide study strategies to reduce building energy consumption, focusing on either operational or embodied energy separately. Thus, there is a gap in social studies regarding the impact of embodied energy on operational energy in buildings. Additionally, energy studies on educational buildings with a social approach are scarce. The primary aim of this research is to develop and test a predictive model of the impact of embodied energy on cultural changes and operational energy in green school buildings. It also examines the moderating role of the embodied energy of the exterior wall core in the causal relationships of the conceptual model. The researcher used a quantitative approach and a systematic methodology with advanced variance-based structural equation modeling techniques to test the hypotheses. After data collection and screening, 702 samples were tested for validity, reliability, and model fit of the external model, and the hypotheses were tested within the structural model. The results, with R2 = 0.704 and 0.755 in two structural equations, indicate a powerful explanation of the variance in cooling load and heating load (i.e., operational energy) based on embodied energy behavior. This suggests the model can predict 70-75% of the influence of embodied energy on operational energy.
2022 Global Status Report for Buildings and Construction | UNEP - UN Environment Programme. (n.d.). Retrieved July 9, 2024, from https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
Acquaye, A. (2010). A Stochastic Hybrid Embodied Energy and CO2_eq Intensity Analysis of Building and Construction Processes in Ireland. https://doi.org/10.21427/D7RW34
Ahamed, M. S., Guo, H., & Tanino, K. (2020). Modeling heating demands in a Chinese-style solar greenhouse using the transient building energy simulation model TRNSYS. In Journal of Building Engineering (Vol. 29). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2019.101114
Akande, O. K., Odeleye, D., Coday, A., & JimenezBescos, C. (2016). Performance evaluation of operational energy use in refurbishment, reuse, and conservation of heritage buildings for optimum sustainability. Frontiers of Architectural Research, 5(3), 371–382. https://doi.org/10.1016/j.foar.2016.06.002
Alwan, Z., Nawarathna, A., Ayman, R., Zhu, M., & ElGhazi, Y. (2021). Framework for parametric assessment of operational and embodied energy impacts utilising BIM. Journal of Building Engineering, 42, 102768. https://doi.org/10.1016/j.jobe.2021.102768
Avkiran, N. K., & Ringle, C. M. (2018). Partial least squares structural equation modeling (PLS-SEM). In Springer International Publishing AG.
Azar, E., & Menassa, C. C. (2012). A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings. Energy and Buildings, 55, 841–853.
Baum, M., & Council, U. G. B. (2007). Green building research funding: An assessment of current activity in the United States. Citeseer.
Becker, J.-M., Rai, A., & Rigdon, E. (2013). Predictive validity and formative measurement in structural equation modeling: Embracing practical relevance.
Black, J., Hoffman, A., Hong, T., Roberts, J., & Wang, P. (2018). Weather Data for Energy Analytics: From Modeling Outages and Reliability Indices to Simulating Distributed Photovoltaic Fleets. IEEE Power and Energy Magazine, 16(3), 43–53. https://doi.org/10.1109/MPE.2018.2801442
Calì, D., Andersen, R. K., Müller, D., & Olesen, B. W. (2016). Analysis of occupants’ behavior related to the use of windows in German households. Building and Environment, 103, 54–69.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295–336.
Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141.
Dalla Rosa, A., & Christensen, J. E. (2011). Low-energy district heating in energy-efficient building areas. Energy, 36(12), 6890–6899.
Dawson, J. F. (2014). Moderation in Management Research: What, Why, When, and How. Journal of Business and Psychology, 29(1), 1–19. https://doi.org/10.1007/s10869-013-9308-7
Diao, L., Sun, Y., Chen, Z., & Chen, J. (2017). Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation. Energy and Buildings, 147, 47–66.
Ding, G. K. C. (2004). The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities [PhD Thesis]. https://opus.lib.uts.edu.au/handle/2100/281
Diwedi, K. (2017). Green Architecture: A Concept of Sustainability. International Journal of Environment Planning and Development, 2(1), 22–29. https://doi.org/10.37628/jepd.v2i1.176
Dixit, M. K. (2013). Embodied energy calculation: Method and guidelines for a building and its constituent materials [PhD Thesis]. https://oaktrust.library.tamu.edu/handle/1969.1/151701
Dixit, M. K. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 79, 390–413. https://doi.org/10.1016/j.rser.2017.05.051
Dixit, M. K., Culp, C. H., & Fernandez-Solis, J. L. (2015). Embodied Energy of Construction Materials: Integrating Human and Capital Energy into an IO-Based Hybrid Model. Environmental Science & Technology, 49(3), 1936–1945. https://doi.org/10.1021/es503896v
Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238–1247. https://doi.org/10.1016/j.enbuild.2010.02.016
Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743. https://doi.org/10.1016/j.rser.2012.03.021
Dixit, M. K., & Singh, S. (2018). Embodied energy analysis of higher education buildings using an input-output-based hybrid method. Energy and Buildings, 161, 41–54. https://doi.org/10.1016/j.enbuild.2017.12.022
Duarte, C., Van Den Wymelenberg, K., & Rieger, C. (2013). Revealing occupancy patterns in an office building through the use of occupancy sensor data. Energy and Buildings, 67, 587–595.
Fixing measurement error to 0 for single-item-latent—Forum.smartpls.com. (n.d.). Retrieved April 28, 2024, from https://forum.smartpls.com/viewtopic.php?t=3333
Gaetani, I., Hoes, P.-J., & Hensen, J. L. (2016). Occupant behavior in building energy simulation: Towards a fit-for-purpose modeling strategy. Energy and Buildings, 121, 188–204.
Guo, C., & Yao, J. (2012). Effect of same Insulation Materials on Energy-Saving Potential of Different Buildings. Applied Mechanics and Materials, 164, 93–96. https://doi.org/10.4028/www.scientific.net/AMM.164.93
Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101–110. https://doi.org/10.1016/J.JBUSRES.2019.11.069
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.
Hammond, G., & Jones, C. (2006). Inventory of Carbon and Energy (ICE), Version 1. 5a Beta, Carbon Vision Buildings Program. UK: University of Bath.
Hammond, G. P., & Jones, C. I. (2010). Embodied Carbon: The Concealed Impact of Residential Construction. In I. Dincer, A. Hepbasli, A. Midilli, & T. H. Karakoc (Eds.), Global Warming (pp. 367–384). Springer US. https://doi.org/10.1007/978-1-4419-1017-2_23
Hanafiah, M. H. (2020). Formative vs. reflective measurement model: Guidelines for structural equation modeling research. International Journal of Analysis and Applications, 18(5), 876–889.
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C., Diamantopoulos, A., Straub, D., Ketchen, D., Hair, J. F., Hult, G., & Calantone, R. (2016). Common Beliefs and Reality about Partial Least Squares: Comments on Rönkkö and Evermann.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), Advances in International Marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
Hirst, N. (2013). Buildings and climate change. Design and Management of Sustainable Built Environments, 23–30.
Iqbal, M. M., & Mia, M. M. (2020). The strategy of management system standards: A variance-based structural equation modeling (VB-SEM). Int. J. Adv. Sci. Technol, 29, 1882–1893.
Jia, M., Srinivasan, R. S., & Raheem, A. A. (2017). From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency. Renewable and Sustainable Energy Reviews, 68, 525–540.
Kline, R. B. (2016). Principles and practices of structural equation modelling. In Methodology in the social sciences.
Krishna A. Joshi. (2013). OPTIMIZATION OF ENERGY IN PUBLIC BUILDINGS. International Journal of Research in Engineering and Technology, 02(13), 423–427. https://doi.org/10.15623/ijret.2013.0213079
Levy, P. S., & Lemeshow, S. (2013). Sampling of populations: Methods and applications. John Wiley & Sons.
Li, Y., Gong, X. Z., Wang, Z. H., Li, H., & Fan, M. M. (2016). External Insulation Design Impacts on the Energy Consumption and Greenhouse Gas Emission of Building. Materials Science Forum, 847, 381–390. https://doi.org/10.4028/www.scientific.net/MSF.847.381
Mellat, N., Ebrahimi Qavam, S., Gholamali Lavasani, M., Moradi, M., & Sadipour, E. (2022). The role of cognitive, emotional, and spiritual development in adult psychological well-being. Journal of Spirituality in Mental Health, 00(00), 1–24. https://doi.org/10.1080/19349637.2022.2121239
Moradi, M., Kheiry, B., & Miralmasi, A. (2022). Narrative Critique of Humanities positivist Research from the Perspective of Generalizability and Reliability of Measures By proposing to replace McDonald’s omega (Case Study: Marketing Research). Research Institute of Hawzah and University(RIHU). https://doi.org/10.30471/mssh.2022.8241.2285
Moradi, M., & Miralmasi, A. (2020). Pragmatic research method (1st ed.). School of quantitative and qualitative research.
Moradi.M, & Miralmasi.M. (2020a). Pragmatic research method ((F. Seydi, Ed.) (1st ed.)). School of quantitative and qualitative research. https://analysisacademy.com/
Moradi.M, & Miralmasi.M. (2020b). Pragmatic research method. In F. Seydi (Ed.). School of Quantitative and Qualitative Research.MPT ACADEMY.
Neuman, W. L. (2014). Social Research Methods: Qualitative and Quantitative Approaches. In Pearson Education Limited (7th ed.). Printed in the United States of America. https://doi.org/10.2307/3211488
Pardo, A., & Román, M. (2013). Reflexiones sobre el modelo de mediación estadística de Baron y Kenny. Anales de Psicología, 29(2). https://doi.org/10.6018/analesps.29.2.139241
Rauf, A., & Crawford, R. H. (2015). Building service life and its effect on the life cycle embodied energy of buildings. Energy, 79, 140–148. https://doi.org/10.1016/j.energy.2014.10.093
Rg Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Tomas, G., Hult, M., & Calantone, R. J. (2014). Point/Counterpoint on Partial Least Squares Common Beliefs and Reality About PLS: Comments on Rö nkkö and Evermann (2013). Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928
Ringle, C. M., Wende, S., & Becker, J.-M. (2022). SmartPLS 4.
Rostami, M., Green-Mignacca, S., & Bucking, S. (2024). Weather data analysis and building performance assessment during extreme climate events: A Canadian AMY weather file data set. Data in Brief, 52, 110036.
Sarstedt, M., & Mooi, E. (2019). A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistic. In Springer (3rd ed.). https://doi.org/10.1007/978-3-642-12541-6
Sharrard, A. L. (2007). Greening construction processes using an input-output-based hybrid life cycle assessment model. Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania. https://www.researchgate.net/profile/Aurora-Sharrard/publication/267259382_Greening_Construction_Processes_Using_an_Input-Output-Based_Hybrid_Life_Cycle_Assessment_Model/links/5485a20a0cf24356db610813/Greening-Construction-Processes-Using-an-Input-Output-Based-Hybrid-Life-Cycle-Assessment-Model.pdf
Slesser, M. (1978). Energy in the Economy. https://www.osti.gov/biblio/6287551
Soflaee, Farzane. (2024, April 22). پیام ما؛ رسانه توسعه پایدار ایران | معماری ایران دچار تجملگرایی شده است. https://payamema.ir/payam/103970
Song, Y. (2017). Generating Buildingâ€TM s Operating Energy Automatically by Energy Plus and C. International Research Journal of Electronics and Computer Engineering, 3(1), 11–13.
Stephan, A., & Stephan, L. (2016). Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings. Applied Energy, 161, 445–464. https://doi.org/10.1016/j.apenergy.2015.10.023
Su, X., Tian, S., Shao, X., & Zhao, X. (2020). Embodied and operational energy and carbon emissions of passive building in HSCW zone in China: A case study. Energy and Buildings, 222, 110090. https://doi.org/10.1016/j.enbuild.2020.110090
Susanti, Y. (2019). Menginterkoneksi Sains dan Agama dalam Pembelajaran IPA di Sekolah Dasar. ISLAMIKA, 1(2), 89–101. https://doi.org/10.36088/islamika.v1i2.209
Tarka, P. (2018). An overview of structural equation modeling: Its beginnings, historical development, usefulness and controversies in the social sciences. Quality and Quantity, 52(1), 313–354. https://doi.org/10.1007/s11135-017-0469-8
Thormark, C. (2006). The effect of material choice on the total energy need and recycling potential of a building. Building and Environment, 41(8), 1019–1026. https:
//doi.org/10.1016/j.buildenv.2005.04.026
Vega, J. (2022). Constructivist Metaphors and Law’s Autonomy in Legal Post-Positivism BT - Human Dignity and the Autonomy of Law (J. M. Aroso Linhares & M. Atienza, Eds.; pp. 89–111). Springer International Publishing. https://doi.org/10.1007/978-3-031-14824-8_6
Woubishet, Z. T., & Abegaz, K. A. (2019). Embodied Energy and CO 2 Emissions of Widely Used Building Materials: The Ethiopian Context. Buildings, 9(6), 136.
Yoon, J. H. (2020). Fuzzy Moderation and Moderated-Mediation Analysis. International Journal of Fuzzy Systems, 22(6), 1948–1960. https://doi.org/10.1007/s40815-020-00848-3
Zilberberg, E., Trapper, P., Meir, I. A., & Isaac, S. (2021). The impact of thermal mass and insulation of building structure on energy efficiency. Energy and Buildings, 241, 110954. https://doi.org/10.1016/j.enbuild.2021.110954
دولت, س., صفدریان, غ., جهانبخش, ح., & معتضدیان, ف. (1402a). بررسی مطالعات مدارس سبز با رویکرد علم سنجی در پایگاه استنادی اسکوپوس. سومین کنفرانس بین المللی معماری،عمران،شهرسازی،محیط زیست و افق های هنر اسلامی در بیانیه گام دوم انقلاب. https://civilica.com/doc/1960061
دولت, س., صفدریان, غ., جهانبخش, ح., & معتضدیان, ف. (1402b). بررسی نقشه های علمی انرژی نهفته در صنعت ساخت وساز در پایگاه استنادی اسکوپوس. سومین کنفرانس بین المللی معماری،عمران،شهرسازی،محیط زیست و افق های هنر اسلامی در بیانیه گام دوم انقلاب. https://civilica.com/doc/1960060/
دولت, س., صفدریان, غ., جهانبخش, ح., & معتضدیان, ف. (1403a). بررسی شبیهسازی انرژی در ساختمان و فرهنگ رفتار ساکنان با رویکرد کتابسنجی در پایگاه استنادی اسکوپوس. تغییرات اجتماعی - فرهنگی, 80(1). http://sanad.iau.ir/fa/Journal/aukh/Article/1092500
دولت, س., صفدریان, غ., جهانبخش, ح., & معتضدیان, ف. (1403b, January 29). بررسی انرژی نهفته در ساختمان با رویکرد بیبلیومتریک در پایگاه استنادی اسکوپوس. سومین کنفرانس بین المللی معماری،عمران،شهرسازی،محیط زیست و افق های هنر اسلامی در بیانیه گام دوم انقلاب. https://civilica.com/doc/1960059/