Effect of seed inoculation with nitragin biofertilizer on germination and primary growth of rapeseed (Brassica napus L.), sesame (Sesamum indicum L.) and sunflower (Helianthus annus L.)
Subject Areas : Agroecology JournalBahram Mirshekari 1 , sahar baser 2
1 - Assistant Professor of Agronomy and Plant Breeding Department, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, Iran.
2 - M.Sc. Student of Agronomy and Plant Breeding Department, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, Iran.
Keywords: growth, Germination rate, Rapeseed, Sunflower, Biofertilizer, Sesame, Nitragin,
Abstract :
Effects of seed inoculation with different concentrations of nitragin (2, 3, 4 cc and control) on germination and primary growth of rapeseed (Brassica napus L.), sesame (Sesamum indicum L.) and sunflower (Helianthus annus L.) was evaluated in a completely randomized design with three replications in Islamic Azad University of Tabriz. Based on the results, rapeseed inoculation with 2 cc nitragin increased radicle and plantlet length up to 110 % and 60 %, respectively, compared with control. When sesame seeds inoculated with 4 cc nitragin, radicle length reached from 38 to 75 mm (48% increase). Application of 2 and 3 cc nitragin could increase plumule length of sesame up to 31%, compared with control. Inoculation of seeds with 2, 3 and 4 cc biofertilizer increased germination rate of sesame up to 26 %, 48 % and 14 % respectively, and reached from 0.16, 0.19 and 0.15 to 0.13 germination per day. According to major role of seed germination rate in uniform emergence of field, it is recommended that sesame seeds were planted after inoculation with 3 cc nitragin. Effect of seed inoculation on sunflower plantlet length was significant and the highest plantlet length (42 mm) was observed in seed treatment with 4 cc nitragin. It seems that relative improvement of plantlet length in presence of nitragin could play an important role at uniform emergence of plants in field.
1- آلیاری، ه. و شکاری، ف. 1379. دانههای روغنی: زراعت و فیزیولوژی. انتشارات عمیدی، تبریز، 182 ص.
2- بینام. 1387. کود بیولوژیک نیتراژین. نشریه شرکت فرآوری شیمیایی زنجان، 2 صفحه.
3- خاوازی، ک. و ملکوتی، م. ج. 1380. ضرورت تولید صنعتی کودهای بیولوژیک در کشور. انتشارات وزارت جهاد کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، 599 ص.
4- خسروی، ه. 1380. کاربرد کودهای بیولوژیک در زراعت غلات. مجموعه مقالات ضرورت تولید صنعتی کودهای بیولوژیک در کشور. انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی، ص. 194-179.
5- خواجهپور، م. ر. 1379. تولید نباتات صنعتی. انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان، 249 صفحه.
6- رازینی، د.، کارساز، ا. و علیپوران، م. ر. 1381. عکسالعمل عملکرد کنجد به آغشتهسازی بذر با سه نوع کود بیولوژیک و مقادیر کاهشیافته کود شیمیایی نیتروژن در اصفهان. پایاننامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، 98 ص.
7- رضایی، م.، آقا شاهی، س. و صیادی، م. 1384. اثر باکتریهای تثبیتکننده نیتروژن بر جوانهزنی زیره سبز. چهارمین کنگره علوم باغبانی ایران، 19-17 آبان ماه، دانشگاه فردوسی مشهد.
8- روستا، م. ج. 1380. بررسی فراوانی و فعالیت آزوسپیریلوم در برخی از خاکهای ایران. پایاننامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه تهران، 201 ص.
9- صالح راستین، ن. 1377. کودهای بیولوژیک. مجله خاک و آب (ویژه نامه کودهای بیولوژیک)، جلد 12، شماره 3، ص. 26-17.
10- صالح راستین، ن. 1380. کودهای بیولوژیک و نقش آنها در راستای نیل به کشاورزی پایدار. مجموعه مقالات ضرورت تولید صنعتی کودهای بیولوژیک در کشور. انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی، ص. 54-1.
11. Bacilio M., Vazquez, P., and Bashan, Y. 2003. Alleviation of noxious effects of cattle ranch composts on wheat seed germination by inoculation with Azospirillum spp. Biology and Fertility of Soils 38: 261–266.
12. Bashan Y., Davis, E. A., Carrillo-Garcia, A., and Linderman, R. G. 2000 Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nursetrees in the Sonoran desert. Appllied Soil Ecology 14: 165–176.
13. Bashan Y., Ivanony, Y. H., and Saad, A. 1989. Nonspecific response in plant growth, yield and root colonization of non-cereal crop plant to inoculation with Azospirilum brasilense. Canadian Journal of Botany 67: 1317-1324.
14. Bhadauria, S., Pahari, G. K., and Kumar, S. 2000. Effect of Azospirillum biofertilizer on seedling growth and seed germination of Emblica officinalis. Indian Journal of Plant Physiology 5: 177-179.
15. Creus C. M., Sueldo, R. J., and Barassi, C. A. 1996. Azospirillum inoculation in pregerminating wheat seeds. Canadian Journal of Microbiology 42: 83–86.
16. Dos Santos, C. C., De Oliviera, D. F., Alves, L. W. R., and Furtado, D. A. S. 2003. Effect of organic extracts associated with surfactant tween 80 on seed germination. Ciencia e Agrotecnologia. 28 (2): 296-299.
17. El-Abd S. O., Singer, S. M., El-Saied, H. M., and Mahmoud, M. H. 1999. Effect of some levels of plant growth regulators and silver nitrate on the growth and yield of broad bean (Vicia faba) plants. Egypt Journal of Horticulture 16 (2): 143-150.
18. EL-Zeiny O. A. H. 2007. Effect of biofertilizers and root exudates of two weed as a source of natural growth regulators on growth and productivity of bean plants (Phaseolus vulgaris L.). Journal of Agricultural and Biological Science 3 (5): 440-446.
19. Gaur A. C. 2001a. Effects of Azotobacterization on the yield of canola (Brassica napus L.): Laboratory experiment. Indian Society of Soil Science 40: 19-22.
20. Gaur A. C. 2001b. Effects of Azotobacterization in presence of fertilizer nitrogen in the yield of canola (Brassica napus L.): Field experiment. Indian Society of Soil Science 41: 50-54.
21. German M. A., Burdman, S., Okon, Y., and Kigel, J. 2000. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils 32: 259–264.
22. Hossain I., Khan, M. A. I., and Podder, A. K. 1999. Seed treatment with Rhizobium in laboratory and field experiments for biomass and seed production of lentil (Lens culinaris L.). Bangladesh Journal of Environmental Science 5: 61-64.
23. Kennedy A. C., and Smith, J. K. 1995. Soil microbial diversity and sustainability of agricultural soil. Journal of Plant and Soil 170: 75-86.
24. Kennedy I. R., and Tychan, Y. T. 1997. Biological N fixation in non-legominous field crops: Recent Advances. Plant and Soil 141: 93-118.
25. Okon Y. 2002. Azospirillum, physiological properties, mode of association with roots and it’s application for the benefit of cereal and forage grass crops. Israel Journal of Botany 31: 214-220.
26. Puente M. E., and Bashan, Y. 1993. Effect on inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar cardon cactus (Pachycereus pringlei). Symbiosis 15: 49–60.
27. Rai, S. N., and Gaur, A. C. 1998. Characterization of Azotobacter spp. and effect of Azotobacter and Azospirillum as inoculant on the yield and N-uptake of wheat crop. Plant and Soil 109: 131-134.
28. Sorial M. E., EL-Khateeb, S. R., and Ali, F. A. 1992. Synergistic effect of Azotobacter on the growth, N, P and K contents of tomato and activity of some pathogenic fungi Menofia. Agricultural Research 17 (4): 1999-2014.
29. Tilak, B. R., Singh, C. S., Roy, N. K., and Subba Rao, N. S. 1992. Azospirillum brasilense and Azotobacter chrococcum inoculum effect on maize and sorghum. Soil Biology and Biochemistry 14: 417-418.
30. Yousry M., Kabesh, O. M., and Seif, K. H. 2003. Manganese availability in a calcareous soil as a result of phosphate fertilization and inoculation with phosphobacterin. African Journal of Agricultural Science 5 (2): 75-80.
_||_