Investigation of the Effect of Biofertilizers on Morphophysiological and Biochemical Traits in Garden Thyme (Thymus vulgaris L.) Under Salinity Stress
Subject Areas : Medicinal PlantsSayedeh Zahra Mousavi Gheidari 1 , Raheleh Khademian 2 , Sudabeh Mafakheri 3
1 - Department of Genetic and plant Breeding, Faculty of Agriculture and Natural Resources. Imam Khomeini International University, Qazvin. Iran.
2 - Department of Genetic and plant Breeding, Faculty of Agriculture and Natural Resources. Imam Khomeini International University, Qazvin. Iran.
3 - Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources. Imam Khomeini International University, Qazvin. Iran
Keywords: Azotobacter, Medicinal Plant, Salinity Stress, Symbiotic Fungus, Thyme,
Abstract :
To examine the role of symbiotic microorganisms in mitigating or reducing the negative effects of salinity stress on garden thyme, a greenhouse experiment was conducted in a factorial design with three replications at the International Imam Khomeini University. In this study, the effects of coexistence of Trichoderma harzianum fungus, Rhizobium lantis bacteria, and a mixture of fungus and bacteria at three salinity levels (0, 50, and 100 mM) on morphophysiological and biochemical traits of garden thyme were evaluated. Morphological traits assessed included root length, stem length, and wet and dry weights of roots and stems. Additionally, physiological and biochemical traits such as malondialdehyde content, electrolyte leakage, enzymatic antioxidants such as catalase and peroxidase, non-enzymatic antioxidants such as proline, total phenol and flavonoid content, as well as DPPH free radical scavenging activity, were evaluated. The results showed that salinity stress significantly reduced root and stem length, wet and dry weights of roots and stems in garden thyme. Furthermore, oxidative stress induced by salinity increased the activity of antioxidant enzymes (catalase and peroxidase) and total phenol and flavonoid content. On the other hand, treatment with T. harzianum fungus and R. lantis bacteria alleviated the negative effects of increased salinity concentration by improving the measured traits, including increased activity of antioxidant enzymes, decreased lipid peroxidation (MDA), and reduction in secondary metabolites, thereby reducing cell damage and promoting plant growth. In most cases, the simultaneous application of fungus and bacteria had a greater effect on the studied traits compared to the individual use of these symbiotic microorganisms.
Abdelshafy Mohamad, O. A., Ma, J. B., Liu, Y. H., Zhang, D., Hua, S., Bhute, S., and Li, L. (2020). Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Frontiers in plant science. 11: 484696. Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd_Allah, E. F., Gucel, S., and Tran, L. S. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in plant science. 7: 183720. Akachoud, O., Bouamama, H., Facon, N., Laruelle, F., Zoubi, B., Benkebboura, A., and Lounès-Hadj Sahraoui, A. (2022). Mycorrhizal inoculation improves the quality and productivity of essential oil distilled from three aromatic and medicinal plants: Thymus satureioides, Thymus pallidus, and Lavandula dentata. Agronomy. 12(9): 2223. Arpanahi, A. A., Feizian, M., Mehdipourian, G., and Khojasteh, D. N. (2020). Arbuscular mycorrhizal fungi inoculation improves essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. European Journal of Soil Biology. 100: 103217. Asghari, B., Mafakheri, S., Zengin, G., Dinparast, L. and Bahadori, M.B. (2020). In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: a good candidate for designing biologically-active food products. Journal of Food Measurement and Characterization. 14: 2196-2208. Ashrafi, M., Azimi-Moqadam, M. R., MohseniFard, E., Shekari, F., Jafary, H., Moradi, P., and Mastinu, A. (2022). Physiological and molecular aspects of two Thymus species differently sensitive to drought stress. BioTech.11(2): 8. Aslani, Z., Hedayati, A., Hassani, A., and Barin, M. (2022). Effects of inoculation with Piriformospora indica on some vegetative, physiological, and biochemical parameters and essential oil content of Origanum vulgare L. ssp. vulgare. Iranian Journal of Medicinal and Aromatic Plants Research. 38(2): 253-265. Azizi, I., Esmaielpour, B., and Fatemi, H. (2020). Effect of foliar application of selenium on morphological and physiological indices of savory (Satureja hortensis) under cadmium stress. Food Science and Nutrition. 8(12): 6539-6549. Bashri, G., and Prasad, S. M. (2015). Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta physiologiae plantarum. 37:1-14. Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., and Morshedloo, M. R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products. 135: 311-320. Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., and Morshedloo, M. R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products. 135: 311-320. Cheng, C., Li, D., Wang, B., Liao, B., Qu, P., Liu, W., and Lü, P. (2022). Piriformospora indica colonization promotes the root growth of Dimocarpus longan seedlings. Scientia Horticulturae. 301: 111137. Druege, U., Baltruschat, H., and Franken, P. (2007). Piriformospora indica promotes adventitious root formation in cuttings. Scientia Horticulturae. 112(4): 422-426. Forouzi, A., Ghasemnezhad, A., and Nasrabad, R. G. (2020). Phytochemical response of Stevia plant to growth promoting microorganisms under salinity stress. South African journal of botany.134:109-118. Foss, K., Przybyłowicz, K. E., and Sawicki, T. (2022). Antioxidant activity and profile of phenolic compounds in selected herbal plants. Plant Foods for Human Nutrition. 77(3): 383-389. Gheshlaghpour, J., Asghari, B., Khademian, R., and Sedaghati, B. (2021). Silicon alleviates cadmium stress in basil (Ocimum basilicum L.) through alteration of phytochemical and physiological characteristics. Industrial Crops and Products. 163: 113338. Hasan, M. S., Selahvarzi, Y., Nabati, J., and Aziz, M. (2020). Effect of mycorrhiza fungi and plant growth promoting rhizobacteria (PGPR) on antioxidant capacity and some morphophysiological traits of medicinal marigold (Calendula officinalis Linn.) under drought stress. Environmental Stresses in Crop Sciences. 13(2): 425-440. Heydari, S., and Pirzad, A. (2021). Efficiency of Funneliformis mosseae and Thiobacillus sp. on the secondary metabolites (essential oil, seed oil and mucilage) of Lallemantia iberica under salinity stress. The Journal of Horticultural Science and Biotechnology. 96(2): 249-259. Lajayer, B. A., Ghorbanpour, M., and Nikabadi, S. (2017). Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety. 145: 377-390. Li, M., Ren, Y., He, C., Yao, J., Wei, M. and He, X., (2022). Complementary effects of dark septate endophytes and Trichoderma strains on growth and active ingredient accumulation of Astragalus mongholicus under drought stress. Journal of Fungi. 8(9): p.920. Lindström, K., and Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial biotechnology. 13(5): 1314-1335. Lykkesfeldt, J. (2007). Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica chimica acta. 380(1-2): 50-58. Manconi, M., Petretto, G., D’hallewin, G., Escribano, E., Milia, E., Pinna, R., Palmieri, A., Firoznezhad, M., Peris, J.E., Usach, I. and Fadda, A.M. (2018). Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids and surfaces B: Biointerfaces. 171: 115-122. Manconi, M., Petretto, G., D’hallewin, G., Escribano, E., Milia, E., Pinna, R., and Manca, M. L. (2018). Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids and Surfaces B: Biointerfaces. 171: 115-122. Miraj, S. and Kiani, S. (2016). Study of pharmacological effect of Thymus vulgaris: A review. Der Pharmacia Lettre. 8: 315-320. Miraj, S., and Kiani, S. (2016). Study of pharmacological effect of Thymus vulgaris: A review. Der Pharmacia Lettre. 8(9): 315-320. Miransari, M., Mahdavi, S., and Smith, D. (2021). The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Applied microbiology and biotechnology. 2: 1-13. Moghaddam, M., Farhadi, N., Panjtandoust, M., and Ghanati, F. (2020). Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 154(6): 835-842. Mohammadzadeh, S., and Pirzad, A. (2021). Biochemical responses of mycorrhizal-inoculated Lamiaceae (Lavender, Rosemary and Thyme) plants to drought: A field study. Soil Science and Plant Nutrition. 67(1): 41-49. Moradi, M., Moradi, B., Hashemian, A. H., Bakhtiari, M., Khazaei, M., Esmaeili, F., and Faramarzi, A. (2022). Beneficial effect of L‐Proline supplementation on the quality of human spermatozoa. Andrologia. 54(8): e14486. Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., and Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological research. 48: 1-7. Noora, H., Shahabivand, S., Karimi, F., Aghaee, A., and Aliloo, A. A. (2017). Piriformospora indica affects growth, tropane alkaloids production and gene expression in Atropa belladonna L. plantlets. Medicinal Plants-International Journal of Phytomedicines and Related Industries. 9(1): 55-62. Nunes-Alves, C., Nobrega, C., Behar, S. M., and Correia-Neves, M. (2013). Tolerance has its limits: how the thymus copes with infection. Trends in immunology. 34(10): 502-510. Patil, S. M., Ramu, R., Shirahatti, P. S., Shivamallu, C., and Amachawadi, R. G. (2021). A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon. 7(5). Pham, A. C., Vo, T. C., Bui, T. D., Van, T. T. H., and Tran, D. Q. (2024). Evaluating Growth and Physiological Responses of a Medicinal Plant Phyla nodiflora to Salinity. International Journal of Plant Biology. 15(1): 187-197. Puvanitha, S., and Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences. 4(4): 126-131. Rahimi, A., Gitari, H., Lyons, G., Heydarzadeh, S., Tuncturk, M., and Tuncturk, R. (2023). Effects of vermicompost, compost and animal manure on vegetative growth, physiological and antioxidant activity characteristics of Thymus vulgaris L. Under water stress. Yuzuncu Yıl University Journal of Agricultural Sciences. 33(1): 40-53. Roby, M. H. H., Sarhan, M. A., Selim, K. A. H., and Khalel, K. I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products. 43: 827-831. Sabzi-Nojadeh, M., Pouresmaeil, M., Amani, M., Younessi-Hamzekhanlu, M., and Maggi, F. (2024). Colonization of Satureja hortensis L. (Summer savory) with Trichoderma harzianum alleviates salinity stress via improving physio-biochemical traits and biosynthesis of secondary metabolites. Industrial Crops and Products. 208: 117831. Sairam, R. K., Rao, K. V., and Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science. 163(5): 1037-1046. Saravanan, A., Kumar, P. S., Jeevanantham, S., Karishma, S., and Kiruthika, A. R. (2021). Photocatalytic disinfection of micro-organisms: Mechanisms and applications. Environmental Technology and Innovation. 24: 101909. Sherameti, I., Tripathi, S., Varma, A., and Oelmüller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Molecular Plant-Microbe Interactions. 21(6): 799-807. Sun, B., Jing, R., Wang, Z., Tian, L., Mao, F., and Liu, Y. (2021). Diversity and community structure of endophytic Bacillus with antagonistic and antioxidant activity in the fruits of Xisha Wild Noni (Morinda citrifolia L.). Microbial Pathogenesis.158: 105065. Taarit, M. B., Msaada, K., Hosni, K., Hammami, M., Kchouk, M. E., and Marzouk, B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products. 30(3): 333-337. Tang, W., and Newton, R. J. (2005). Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation. 46: 31-43. Tavakkoli, E., Rengasamy, P., and McDonald, G. K. (2010). High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of experimental botany. 61(15): 4449-4459. Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., and Oelmüller, R. (2008). The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions. 21(10): 1371-1383. Verma, S., Negi, N. P., Pareek, S., Mudgal, G., and Kumar, D. (2022). Auxin response factors in plant adaptation to drought and salinity stress. Physiologia Plantarum. 174(3): e13714. Wu, W., Chen, W., Liu, S., Wu, J., Zhu, Y., Qin, L., and Zhu, B. (2021). Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in plant science. 12: 646146. Yaghoubian, Y., Goltapeh, E. M., Pirdashti, H., Esfandiari, E., Feiziasl, V., Dolatabadi, H. K., and Hassim, M. H. (2014). Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agricultural Research. 3: 239-245. Yang, X., Li, T., Liu, Y., Gu, Y., Li, J., Wang, C., and Zhu, D. (2024). Bacillus sp. alone or combined with salicylic acid inhibited Trichoderma spp. infection on harvested white Hypsizygus marmoreus. Frontiers in Microbiology. 15: 1324833.
Zarshenas, M. M., and Krenn, L. (2015). A critical overview on Thymus daenensis Celak.: phytochemical and pharmacological investigations. Journal of integrative medicine. 13(2): 91-98