بررسی عددی فرآیند ذوب ترکیبات حاوی نانو ذرات برای توسعه روند تغییر فاز
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringنادر پورمحمود 1 , ناصر مصطفوی نیا 2 , امیر حسن زاده 3
1 - دانشیار، دانشکده مکانیک، دانشگاه ارومیه
2 - دانشجوی دکتری، دانشکده مکانیک، دانشگاه ارومیه
3 - دانشجوی دکتری، دانشکده مکانیک، دانشگاه ارومیه
Keywords: پارافین, نرخ ذوب, نانو ذره,
Abstract :
در کار ارائه شده، فرآیند ذوب ترکیبات حاوی نانو ذرات (NePCM) در یک حفرهمربعی تحت زوایای مختلف در اثر اعمال دو جفت منبع حرارتی چاه-چشمه بر روی دیواره های افقی، بصورت عددی مورد بررسی قرار گرفته است. برای بررسی اثر تغییر در موقعیت المانهای چاه-چشمه روی دیوارهای افقی بر نسبت کسری مابع، چهار چیدمان مختلف از المانهای مذکور بکار گرفته شده است. در مورد اول، چشمه ها و چاه ها به طور جداگانه روی دیوارهای افقی قرارگرفته اند. شرایط محیطی در مورد دوم بدین صورت است که المانهای چشمه و چاه، بطور متناوب روی دیوارهای افقی چیده شده اند.در چیدمان سوم، چشمهها در سمت چپ المانهای چاه قرار گرفته و نهایتا در مورد شکل چهارم ، عناصر چشمه و چاه همه در پایین دیوارهای افقی قرار می گیرند. نتایج نشان میدهد که در چیدمان اول با استفاده از 2 درصد وزنی نانو ذرات Al2O3، در مقایسه با بقیه موارد، بیشترین نسبت کسری مایع بدست میآید.
[1] FaridM.M., KhudhairA.M., RazackS.A.K., Al-HallajS., A review on phase change energy storage: materials and applications, Energy Conversion and Management, Vol. 45, No.9–10,2004, pp. 1597–1615.
[2] ZhouD., ZhaoC.Y., TianY., Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy, Vol. 92, 2012, pp.593–605.
[3] ZalbaB., Marı́nJ.M., CabezaL.F., MehlingH., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, Vol. 23, No. 3, 2003, pp.251–283.
[4] AtulS., TyagiV.V., ChenC.R., BuddhiD., Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13 ,2009, pp. 318–345.
[5] MengE., Yu, ZhanG., HeY., Experimental and numerical study of the thermal performance of a new type of phase change material room, Energy Conversion and Management, 74 ,2013, pp.386–394.
[6] ZhangY., ChenZ., WangQ., WuQ., Melting in an enclosure with discrete heating at a constant rate, Experimental Thermal and Fluid Science, Vol. 6 ,1993, pp.196–201.
[7] FarajiM., El QarniaH., Numerical study of melting in an enclosure with discrete protruding heat sources, Applied Mathematics Modeling, Vol. 34,2010, pp.1258–1275.
[8]KousksouT., MahdaouiM., AhmedA., MsaadA.A., Melting over a wavy surface in a rectangular cavity heated from below, Energy, Vol. 64,2014, pp.212-219.
[9] KhodadadiJ.M., HosseinizadehS.F., Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, International Communication in Heat and Mass Transfer,Vol. 34,2007, pp.534–543.
[10] ZengJ.L., SunL.X., XuF., TanZ.C., ZhangZ.H., ZhangJ., ZhangT., Study of a PCM based energy storage system containing Ag nanoparticles, Journal of Thermal Analysis and Calorimetry, Vol. 87,2007, pp.369–373.
[11] WuS.Y., WangH., XiaoS., ZhuD.S., An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials, Journal of Thermal Analysis and Calorimetry, Vol. 110,2012, pp.1127–1131.
[12] ChowL.C., ZhongJ.K., Thermal conductivity enhancement for phase change storage media, International Communications in Heat and Mass Transfer, Vol. 23,1996, pp. 91–100.
[13] VajjhaR.S., DasD.K., Measurement of thermal conductivity of threenanofluids and development of new correlations, Journal of Heat and Mass Transfer,Vol. 52,2009, pp.4675–4682.
[14] HoC.J., GaoT.Y., Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, International Communications in Heat and Mass Transfer,Vol. 36, No.5, 2009, pp.467-470.
[15] KashaniS., RanjbarA.A., AbdollahzadehM., SebtiS., Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity, Heat Mass Transfer,Vol. 48,2012, pp. 1155–1166.
[16] HosseinizadehS.F., RabienatajDarziA.A., TanF.L., Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container, International Journal of Thermal Science,Vol. 41,2012, pp.77–83.
[17] ArasuA.V., MujumdarA.S., Numerical study on melting of paraffin wax with Al2O3 in a square enclosure, International Communications in Heat and Mass Transfer,Vol. 39,2012, pp.8–16.
[18] SebtiS., MastianiM., MirzaeiH., DadvandA., KashaniS., HosseiniS.A., Numerical study of the melting of nano-enhanced phase change material in a square cavity, Journal of Zhejiang University Science A, Vol. 14, No.5, 2013, pp.307-316.
[19] HoC.J., GaoJ.Y., An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure, International Journal of Heat and Mass Transfer, Vol. 62, 2013, pp.2–8.
[20] ZengY., FanL.W., XiaoY.Q., YuZ.T., CenK.F., An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity, International Journal of Heat and Mass Transfer, Vol. 66,2013, pp.111–117.
[21] El-HasadiY.M.F., KhodadadiJ.M., Numerical simulation of the effect of the size of suspensions on the solidification process of nanoparticle-enhanced phase change materials, Journal of Heat Transfer, Vol. 135, No.5, 2013, 052901.
[22] N.S. Dhaidan, J.M. Khodadadi, T.A. Al-Hattab, S.M. Al-Mashat, Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux, InternationalJournal of Heat and Mass Transfer, Vol. 66,2013, pp.672–683.
[23] DhaidanN.S., KhodadadiJ.M., Al-HattabT.A., Al-MashatS.M., Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux, InternationalJournal of Heat and Mass Transfer, Vol. 67,2013, pp.523–534
[24] DhaidanN.S., KhodadadiJ.M., Al-HattabT.A., Al-MashatS.M., Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity, International Journal of Heat and Mass Transfer, Vol. 67 , 2013, pp.455–468.
[25] JourabianM., FarhadiM., SedighiK., On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit, Computers and Mathematics with Applications,Vol. 67,2014, pp.1358-1372.
[26] http://www.fluent.com.
[27] KandasamyR., WangX.Q., MujumdarA.S., Transient cooling of electronics using phase change material (PCM)-based heat sinks, Applied Thermal Engineering,Vol. 28,2008, pp.1047–1057.
[28] SasmitoA.P., KurniaJ.C., MujumdarA.S., Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes, Nanoscale Research Letters, Vol. 6, No.1, 2011, pp.1-14.
[29] ArasuA.V., SasmitoA.P., MujumdarA.S., Numerical performance study of paraffin wax dispersed with Alumina in a concentric pipe latent heat storage system, Thermal Science, Vol. 17, 2013, pp.419-430.
[30] VajjhaR.S., DasD.K., NamburuP.K., Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuOnanofluids in the flat tubes of a radiator, International Journal of Heat Fluid Flow, Vol. 31, 2010, pp.613–621.