آنالیز خمش نانولوله های دارای انحنای اولیهی تعبیه شده بر روی بستر الاستیک بر مبنای تئوری الاستیسیته غیرمحلی و روش گالرکین
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
1 - دانشجو، دانشکده مکانیک، دانشگاه صنعتی اصفهان
2 - استاد، دانشکده مکانیک، دانشگاه صنعتی اصفهان
Keywords: تحلیل خمش, نانولوله ی کربنی با انحنای اولیه, تئوری الاستیسیته ی غیرمحلی, روش نیوتن رفسون, روش گالرکین,
Abstract :
نانولولههای کربنی در تقویت کامپوزیتها نقش بسزایی ایفا میکنند. بدیهی است که برخی از نانولولهها در هنگام کاربرد، شکل منظم ابتدایی خود را حفظ نمی کنند و دچار اعوجاج میشوند. این اعوجاج میتواند در حین فرآیند ساخت یا بعد از آن درنتیجهی تأثیر ماتریس رخ دهد. بر این اساس، مدلسازی این نوع نانوساختار به صورت پوسته یا تیر بدون انحنا، میتواند خطایی قابل ملاحظه را با نتایج همراه کند. در این مقاله، خمش نانولولههای دارای انحنای اولیه مورد مطالعه قرار میگیرد. معادلات تعادل بر پایه تئوری الاستیسیته غیر محلی به کمک اصل کمینهسازی انرژی پتانسیل کل، استخراج و از روش گالرکین برای حل آنها بهره گرفته میشود. از مدل وینکلر برای مدلسازی بستر الاستیک استفاده میشود. حل خیز حاصل از دستگاه معادلات غیرخطی به کمک روش عددی نیوتن رفسون صورت میگیرد و در نهایت تأثیر مقیاس کوچک، انحنای اولیه و مدول فونداسیون بر روی خیز نانولولهها مورد بررسی قرار خواهد گرفت
[1] Iijima S., “Helical microtubules of graphitic carbon”, Nature, 354, 1991, pp. 56-58.
[2] Thostenson E.T., Ren, Z., Chou, T.W., “Advances in the science and technology of carbon nanotubes and their composites: a review”, Composites Science and Technology, Vol. 61, 2001, pp. 1899–1912.
[3] Zhou S.J., Li Z.Q., “Length scales in the static and dynamic torsion of a circular cylindrical micro-bar”, Shandong University Technology, Vol. 31, 2001, pp. 401–407.
[4] Fleck N.A., Hutchinson J.W., “Strain gradient plasticity: theory and experiment”, Acta Metal Material, Vol. 42, 1994, pp. 475-487.
[5] Yang A.C.M., Chong D.C.C., Lam P., “Couple stress based strain gradient theory for elasticity”, Solids Structure, Vol. 39, 2002, pp. 2731–2743.
[6] Eringen A.C., “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves”, Journal of Applied Physics, Vol. 54, 1983, pp. 4703–4710,.
[7] Lu P., Lee H.P., Lu C., Zhang P.Q., “Dynamic properties of flexural beams using a nonlocal elasticity model”, Journal of Applied Physics, Vol. 99, 2006, No. 073510.
[8] Peddiseon P., Buchanan J.R., McNitt R.P., “Application of nonlocal continuum models to nanotechnology”, International Journal of Engineering Science, Vol. 41, 2003, pp. 305-312.
[9] Lu P., Lee H.P., Lu C., Zhang P.Q., “Application of nonlocal beam models for carbon nanotubes”, International Journal of Solids Structure, Vol. 44, 2007, pp. 5289-5300.
[10] Reddy J.N., “Nonlocal theories for bending, buckling and vibration of beams”, International Journal of Engineering Science, Vol. 45, 2007, pp. 288-307.
[11] Aydogdu M., “A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration”, Physica E, Vol. 41, 2009, pp. 1651-1655.
[12] Lee H.L., Chang W.J., “Surface and small scale effects on vibration analysis of a nonuniform nanocantilever beam”, Physica E, Vol. 43, 2010, pp. 466-469.
[13] Simsek M., “Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory”, Steel & Composite Structures, Vol. 11, 2011, pp. 59-76.
[14] Zhang Y.Q., Liu G.R., Han X., “Effect of Small Length Scale on Elastic Buckling of Multi-Walled Carbon Nanotubes Under Radial Pressure”, Physics Letters A, Vol. 69, 2006, pp. 370-376.
[15] Murmu T., Pradhan S.C., “Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM”, Physica E, Vol. 41, 2009, pp. 1232–1239.
[16] khademolhosseini F., “Application of Nonlocal continuum shell models for torsion of single-walled carbon nanotubes”, Department of Mechanical Engineering, Sharif University of Technology, 2009.
[17] Senthilkumar V., “Buckling analysis of a single-walled carbon nanotube with nonlocal continuum elasticity by using differential transform method”, Advanced science letter, Vol. 3, 2010, pp. 337-340.
[18] Wang Yi-Ze., Li F.M., Kishimoto K., “Scale effects on thermal buckling properties of carbon nanotube”, Physics Letters A, Vol. 374, 2010, pp. 4890-4893.
[19] Civalek O., Demir C., “Buckling and bending analysis of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on nonlocal continuum model”, Asian journal of Civil Engineering, Vol. 12, 2011, pp. 651-661.
[20] Wang C.M., Duan W.H., “Free vibration of nanorings/arches based on nonlocal elasticity”, Journal of Applied Physics, Vol. 104, 2008, 014303.
[21] Tepe A., “Nano-scale analysis of curved single walled carbon nanotubes for in-plane loading”, Journal of Computational and Theoretical Nanoscience, Vol. 7,2010, pp. 2405-2411.
[22] Duan W.H., Wang C.M., “Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory”, Nanotechnology, Vol. 18, 2007, No. 385704.
[23] Aghababaei R., Reddy J.N., “Nonlcal third order shear deformation plate theory with application to bending and vibration of plates”, Journal of Sound and Vibration, Vol. 326, 2009, pp. 227-289.
[24] Babaei H., Shahidi A.R., “Small scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method”, Archive Applied Mechanics, Vol. 81, 2010, pp.1051-1062.
[25] Ansari R., “Nonlocal finite element model for vibration of embedded multi layered graphene sheets”, Computational MaterialsScience, Vol. 49, 2010, pp. 831–838.
[26] Eringen A.C., “Nonlocal Continuum Field Theories”, Springer, NewYork, 2002.
[27] Zhang Y.Q., Liu G.R., Xie X.Y., “Free transverse vibrations of double walled carbon nanotubes using a theory of nonlocal elasticity”, Physics Review B, Vol. 71(19), 2005, No. 195404.
[28] Wang Q., “Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum model”, Journal of Applied Physics, Vol. 98, 2005, No. 124301.
[29] Phadikar J.K., Pradhan S.C., “Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates”, Computational materials science, Vol. 49, 2010, pp. 492-499.
[30] Fung Y.C., Kaplan A., “Buckling of low arches or curved beams of small curvature”, NACA TN 2840,1952.
[31] Fisher F.T., Bradshaw R.D., Brinson, L.C., “Fiber waviness in nanotube-reinforced polymer composites-I: modulus prediction using effective nanotube properties”, Composite Science Technology, Vol. 63, 2003, pp. 1689-2391.
[32] Qian D., Dickey E.C., Andrews, R., Rantell, T., “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites”, Applied physics Letter, Vol. 76(20), 2003, pp. 2868-2938.
[33] Bradshaw R.D., Fisher F.T., Brinson L.C., “Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor”, Composite Science Technology, Vol. 63, 2003, pp. 1705-1727.
[34] Aydogdu M., “A general nonlocal beam theory: its application to nanobeam bending”, buckling and vibration,Physica E, Vol. 41, 2009, pp. 1651-1655.