بررسی انتقال حرارت نانوسیال در کانال با مقطع مثلثی با دو وجه شارثابت و یک وجه دماثابت
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringمحمدامیر آقانجفی 1 , بابک مهماندوست 2
1 - کارشناس ارشد، دانشکده مکانیک، دانشگاه آزاد اسلامی خمینی شهر، اصفهان، ایران
2 - استادیار، دانشکده مکانیک، دانشگاه آزاد اسلامی خمینی شهر، اصفهان، ایران
Keywords: ضریب انتقال حرارت جابجایی, نانوسیال, عدد ناسلت, جریان آرام,
Abstract :
مساله بررسی عددی انتقال حرارت در کانال با مقطع مثلث متساویالاضلاع با قطر هیدرولیکی 8 میلیمتر، طول 1 متر با استفاده از نانوسیال آب-اکسیدمس، در 2 قطر 20 و80 نانومتری و کسرحجمی 1، 2 و 4 درصد، ابتدا در حالت شار ثابت در هر 3 وجه کانال و سپس حالت شارثابت بر روی 2 وجه و دمای ثابت بر روی وجه کف(صفحه داغ) میباشد. نانوسیال بصورت تکفازی در نظر گرفته میشود. در تکنولوژی نانو، اولین اثر کاهش اندازه ذرات، افزایش سطح است. افزایش نسبت سطح به حجم نانوذرات باعث میشود که اتم های واقع در سطح، اثر بسیار بیشتری نسبت به اتم های درون حجم ذرات، بر خواص فیزیکی ذرات داشته باشند. همچنین ترکیب نانوذرات با سیال، بواسطه حرکت براونی نانوذرات و اثر خوشهای آنها، موجب افزایش ضریب هدایت گرمایی و ضریب انتقال حرارت جابجایی سیال میشود. از آنجا که در بحث انتقال حرارت، افزایش ضریب انتقال حرارت جابجایی به تنهایی کافی نبوده و عدد ناسلت نیز باید بررسی شود. در این پایاننامه سعی کردیم هر دو پارامتر را در کنار هم بررسی کنیم. رژیم جریان آرام در نظر گرفته شده است. ضریب انتقال حرارت جابجایی و عدد ناسلت، تاثیر قطر نانوذرات بر میزان انتقال حرارت، تاثیر کسرحجمی نانوذرات بر ماکزیمم سرعت در مقطع عرضی بررسی شده است.
[1] Singh A.K., Thermal Conductivity of Nanofluids, Defence Science Journal, vol. 58, no. 5, 2008, pp. 600–607.
[2] Maxwell J.C., A Treatise on Electricity and Magnetism, 3rd edition. Oxford, UK: Clarendon Press, 1891.
[3] Das S.K., Choi S.U.S., Patel H.E., Heat Transfer in Nanofluids- A Review, Heat Transfer Engineering, vol. 27, 2006, pp. 3–19.
[4] Khaled A.R.A., Vafai K., Heat transfer enhancement through control of thermal dispersion effects, International Journal of Heat Transfer, vol. 48, 2005, pp. 2172–2185.
[5] Heris S.Z., Esfahany M.N., Etemad G., Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through a Circular Tube, Numerical Heat Transfer Part A, vol. 52, Sep. 2007, pp. 1043–1058.
[6] Behzadmehr A., Saffar-Avval M., Galanis N., Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat Fluid Flow, vol. 28, 2007, pp. 211-219.
[7] Lee S.W., Park S.D., Kang S., Bang I.C., Kim J.H., Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, International journal of heat and mass Transfer, vol. 54 , 2011, pp. 433-8.
[8] Karimipour A., Afrand M., Akbari M., Safaei M.R., Simulation of fluid flow and heat transfer in the inclined enclosure, in: Int. Conf. Fluid Dyn. Thermodyn. (ICFDT 2012), 2012, Zurich Switzerland.
[9] Wen D., Ding Y., Experimental Investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat Mass Transfer, vol. 47, 2004, pp. 5181-5188.
[10] Lotfi R., Saboohi Y., Rashidi A.M., Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, Int. Commun. Heat Mass Transfer, vol. 37, pp. 74–78.
[11] Rostamani M., Hosseinizadeh S.F., Gorji M., Khodadadi J.M., Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties, International Communications in Heat and Mass Transfer, vol. 37, 2010, pp. 1426-1431.
[12] Ahmed H.E., Mohammed H.A., Yusoff M.Z., Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator, Superlattices and Microstructures, vol. 52, 2012, .pp. 398-415.
[13] Bang I.C., Heo G., An axiomatic design approach in development of nanofluid coolants, Appleid Thermal Engeering, no. 1, vol. 29, 2009, pp. 75–90.
[14] Shariat M., Akbarinia A., Hossein A., Behzadmehr A., Laur R., Numerical study of two phase laminar mixed convection nano fluid in elliptic ducts, Applied Thermal Engineering, vol. 31, 2011, pp. 2348–2359.
[15] Peng W., Minli B., Jizu L., Liang Z., Wenzheng C., Guojie L., Comparison of Multidimensional Simulation Models for Nanofluids Flow Characteristics, Numerical Heat Transfer Part B Fundam., vol. 63, 2013, pp. 62–83.
[16] Pantzali M.N., Mouza A.A., Paras S.V., c (PHE), Chemical Engineering Science, vol. 64, No. 14, 2009, pp. 3290–3300.
[17] Bergman T.L., Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection, International Journal of Heat and Mass Transfer, vol. 52, 2009, pp. 1240–1244.
[18] Duangthongsuk W., Wongwises S., Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heat and Mass Transfer, vol. 52 , 2009, pp. 2059–2067.
[19] Nguyen C.T., Roy G., Gauthier C., Galanis N., Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system,” Applied Thermal Engineering, vol. 27, 2007, pp. 1501–1506.
[20] Zeinali Heris S., Etemad S.Gh., Nasr Esfahany M., Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International communications in Heat and Mass Transfer, vol. 33, 2006, pp. 529-535.
[21] Zeinali Heris S., Nasr Esfahany M., Etemad S.Gh., Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International journal of Heat Fluid Flow, vol. 28 , 2007, pp. 203-210.
[22] Zeinali heris S., Edalati Z., Noei H., Experimental investigation of Al2O3/water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow, Heat transfer engineering, vol.35, No. 13, 2014, pp. 321-334.
[23] Vafaei S., Dongsheng Wen Convective Heat Transfer Of Alumina Nanofluid in a Microchannel, IHTC14-22206.
[24] Kim D., Kwon Y., Cho Y., Li C., Cheong S., Hwang Y., Lee J., Hong D., Moon S., Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Current Applied Physics, vol. 9, 2009. pp. 119–123.
[25] Lai W.Y., Phelan P.E., Vinod S., Prasher R., Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube, Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 11, 2008, pp. 970–978.
[26] Fotukian S.M., Nasr Esfahany M., Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, International Communications in Heat and Mass Transfer vol. 37, 2010, pp. 214-219.
[27] Duangthongsuk W., Wongwises S., An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer ,vol. 53, 2010, pp. 334-344.
[28] Ben Mansour R., Galanis N., Nguyen C.T., International Journal of Thermal Sciences Experimental study of mixed convection with water e Al2O3 nanofluid in inclined tube with uniform wall heat flux,” International Journal of Heat and Mass Transfer, vol. 50, 2010, pp. 403–410.
[29] Zabihi K., Gholamian F., Vasefi S.I., Experimental and Numerical Investigation of Al2O3-Water Nanofluid Inside a Triangular Tube, World Applied Sciences Journal, vol. 22, 2013, pp. 601-607.