مدلسازی استاتیکی غیرخطی ورق هدفمند تابعی نسبتاً ضخیم با استفاده از روش آزادسازی دینامیکی
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringمحمدجواد محمودی 1 , وحید محلوجی 2
1 - استادیار، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران
2 - دانشجوی دکتری، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران
Keywords: روش آزادسازی دینامیکی, ورق هدفمند تابعی, تئوری مرتبه اول برشی میندلین, تغییر شکل بزرگ الاستیک,
Abstract :
در این مقاله تحلیل استاتیکی غیرخطی ورق نسبتاً ضخیم ساخته شده از مواد هدفمند تابعی با استفاده از روش آزادسازی دینامیکی صورت گرفته است. این امر به کمک تئوری مرتبه اول برشی میندلین به منظور ضخیم در نظر گرفتن ورق انجام شده است. جهت تحلیل رفتار غیرخطی هندسی معادلات گسسته شده استخراج شده است. شرایط بارگذاری و شرایط مرزی ورق بهترتیب بهصورت بارگستره عرضی یکنواخت و تکیهگاه ساده در چهار لبه ورق ضخیم در نظرگرفته شده است. جهت عمومیت بخشیدن به نتایج بهدستآمده، این معادلات به صورت بدون بعد با اعمال روش آزادسازی دینامیکی بر مبنای تفاضلات محدود مرکزی حل شدهاند. اثر پارامترهای مسأله نظیر ثابت توانی ماده هدفمند تابعی و نسبت ضلع به ضخامت ورق بر نتایج تحلیل مورد بررسی قرار گرفته است. با توجه به نتایج بهدست آمده، لزوم درنظر گرفتن رفتار غیرخطی هندسی و استفاده از تئوری ای که اثرات ضخامت ورق روی پاسخ خمش ورق را درنظر بگیرد و همچنین در نهایت لزوم استفاده از روش حل آزادسازی دینامیکی با وجود جملات غیرخطی ناشی از تغییرشکل زیاد ورق ضخیمهدفمند تابعی بحث شده است.
[1] Koizumi M., The concept of FGM, Ceramic Transactions, Functionally Gradient. Materials, vol. 34, 1993, pp. 3-10.
[2] Aboudi J., Pindera M.J., Arnold S.M., Thermoelastic theory for the response of materials functionally graded in Two Directions, International Journal of Solid and Structures, vol. 33, 1996, pp. 931-966.
[3] Aboudi J., Pindera M.J., Arnold S.M., Elastic response of metal matrix composites with tailores microstructures to thermal gradient, International Journal of Solid and Structures, vol. 31, 1994, pp. 1393-1428.
[4] Aboudi J., Pindera M.J., Arnold S.M., Higher order theory for functionally graded materials, Composites Part B, vol. 30, 1999, pp. 777-832.
[5] Reddy J.N., Praveen G.N., Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, , International Journal of Solid and Structures, vol. 35, 1998, pp. 4457-4476.
[6] Reddy J.N., Wang C.M., Kitipornchai S., Axisymmetric bending of functionally graded circular and annular plates, , European Journal of Mechanics A/Solids, vol. 18, 1999, pp. 185-199.
[7] Reddy J.N., Analysis of functionally graded plates, International Journal for Numerical Method in Engineering, vol. 47, 2000, pp. 663-684.
[8] Reddy J.N., Cheng Z.Q., Three-dimensional thermo-mechanical deformation of functionally graded rectangular plate, European Journal of Mechanics A/Solids, vol. 20, 2001, pp. 841-855.
[9] Cheng Z.Q., Batra R.C., Three-dimensional deformation of a functionally graded elliptic plate, Composite Part B, vol. 31, 2000, pp. 97-106.
[10] Cheng Z.Q., BatraR.C., Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories, Archive of mechanics, vol. 52, 2000, pp. 143-158.
[11] Kashtalyan M., Three-dimensional elasticity solution for bending of functionally graded rectangular plates,European Journal of Mechanics A/Solids, vol. 23, 2004, pp. 853-864.
[12] Woo J., Meguid S.A., Nonlinear analysis of functionally graded platesand shallow shells,International Journal of Solid and Structures, vol. 38, 2001, pp. 9-21.
[13] Yang J., Shen H.S., Non-linear analysis of functionally graded plates under transverse and in-plane loads, International Journal of Non-linear Mechanics, vol. 38, 2003, pp. 467-482.
[14] Ghannad Pour S.A.M., Alinia M.M., Large deflection behavior of functionally graded plates under pressure loads, Composite Structures, 75, 2006, pp. 67-71.
[15] Alibeigloo A., Exact solution for thermo-elastic response of functionally graded rectangular plates, Composite Structures, vol. 92, 2010, pp. 113-121.
[16] Kumar J.S., Reddy B.S., Reddy C.E., Nonlinear bending analysis of functionally graded plates using higher order theory, International Journal of Engineering Science and Technology, vol. 3, 2012, pp. 3010-3022.
[17] Otter J.R.H., Day A.S., Tidal flow computations, The Engineer, 209, 1960, pp. 177-182.
[18] DayA.S., An introduction to dynamic relaxation, The Engineer, vol. 19, 1965, pp. 218-221.
[19] Otter J.R.H., Computations for prestressed concrete reactor pressure vessels using dynamic relaxation, Nuclear Structural Engineering, vol. 1, 1965, pp. 61-75.
[20] Turvey G.J., Osman M.Y., Elastic large deflection analysis of isotropic rectangular Mindlin plates, International Journal of Mechanical sciences, vol. 32, 1990, pp. 315-328.
[21] Falahatgar S.R., Salehi M., Dynamic relaxation nonlinear viscoelastic analysis of annular sector composite plate, Journal of Composite Materials, vol. 43, 2009, pp. 257-275.
[22] Turvey G.J., Salehi M., DR large deflection analysis of sector plates, Computers and Structures, vol. 34, 1990, pp. 101-112.
[23] Turvey G.J., Salehi M., Computer-generated elasto-plastic design data for pressure loaded circular plates, Computers and Structures, vol. 41, 1991, pp. 1329-1340.
[24] Salehi M., Shahidi A.G., Large deflection analysis of sector Mindlin plates, Computers and Structures, vol. 52, 1994, pp. 987-998.
[1] Koizumi M., The concept of FGM, Ceramic Transactions, Functionally Gradient. Materials, vol. 34, 1993, pp. 3-10.
[2] Aboudi J., Pindera M.J., Arnold S.M., Thermoelastic theory for the response of materials functionally graded in Two Directions, International Journal of Solid and Structures, vol. 33, 1996, pp. 931-966.
[3] Aboudi J., Pindera M.J., Arnold S.M., Elastic response of metal matrix composites with tailores microstructures to thermal gradient, International Journal of Solid and Structures, vol. 31, 1994, pp. 1393-1428.
[4] Aboudi J., Pindera M.J., Arnold S.M., Higher order theory for functionally graded materials, Composites Part B, vol. 30, 1999, pp. 777-832.
[5] Reddy J.N., Praveen G.N., Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, , International Journal of Solid and Structures, vol. 35, 1998, pp. 4457-4476.
[6] Reddy J.N., Wang C.M., Kitipornchai S., Axisymmetric bending of functionally graded circular and annular plates, , European Journal of Mechanics A/Solids, vol. 18, 1999, pp. 185-199.
[7] Reddy J.N., Analysis of functionally graded plates, International Journal for Numerical Method in Engineering, vol. 47, 2000, pp. 663-684.
[8] Reddy J.N., Cheng Z.Q., Three-dimensional thermo-mechanical deformation of functionally graded rectangular plate, European Journal of Mechanics A/Solids, vol. 20, 2001, pp. 841-855.
[9] Cheng Z.Q., Batra R.C., Three-dimensional deformation of a functionally graded elliptic plate, Composite Part B, vol. 31, 2000, pp. 97-106.
[10] Cheng Z.Q., BatraR.C., Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories, Archive of mechanics, vol. 52, 2000, pp. 143-158.
[11] Kashtalyan M., Three-dimensional elasticity solution for bending of functionally graded rectangular plates,European Journal of Mechanics A/Solids, vol. 23, 2004, pp. 853-864.
[12] Woo J., Meguid S.A., Nonlinear analysis of functionally graded platesand shallow shells,International Journal of Solid and Structures, vol. 38, 2001, pp. 9-21.
[13] Yang J., Shen H.S., Non-linear analysis of functionally graded plates under transverse and in-plane loads, International Journal of Non-linear Mechanics, vol. 38, 2003, pp. 467-482.
[14] Ghannad Pour S.A.M., Alinia M.M., Large deflection behavior of functionally graded plates under pressure loads, Composite Structures, 75, 2006, pp. 67-71.
[15] Alibeigloo A., Exact solution for thermo-elastic response of functionally graded rectangular plates, Composite Structures, vol. 92, 2010, pp. 113-121.
[16] Kumar J.S., Reddy B.S., Reddy C.E., Nonlinear bending analysis of functionally graded plates using higher order theory, International Journal of Engineering Science and Technology, vol. 3, 2012, pp. 3010-3022.
[17] Otter J.R.H., Day A.S., Tidal flow computations, The Engineer, 209, 1960, pp. 177-182.
[18] DayA.S., An introduction to dynamic relaxation, The Engineer, vol. 19, 1965, pp. 218-221.
[19] Otter J.R.H., Computations for prestressed concrete reactor pressure vessels using dynamic relaxation, Nuclear Structural Engineering, vol. 1, 1965, pp. 61-75.
[20] Turvey G.J., Osman M.Y., Elastic large deflection analysis of isotropic rectangular Mindlin plates, International Journal of Mechanical sciences, vol. 32, 1990, pp. 315-328.
[21] Falahatgar S.R., Salehi M., Dynamic relaxation nonlinear viscoelastic analysis of annular sector composite plate, Journal of Composite Materials, vol. 43, 2009, pp. 257-275.
[22] Turvey G.J., Salehi M., DR large deflection analysis of sector plates, Computers and Structures, vol. 34, 1990, pp. 101-112.
[23] Turvey G.J., Salehi M., Computer-generated elasto-plastic design data for pressure loaded circular plates, Computers and Structures, vol. 41, 1991, pp. 1329-1340.
[24] Salehi M., Shahidi A.G., Large deflection analysis of sector Mindlin plates, Computers and Structures, vol. 52, 1994, pp. 987-998.
[25] Turvey G.J., SalehiM., Circular plates with one diametral stiffener-an elastic large deflection analysis, Computersand Structures, vol. 63, 1997, pp. 775-783.
[26] Golmakani E., KadkhodayanM., Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate Theories, Composite Structures, vol. 93, 2011, pp. 973-982.
[27] Delale F., Erdogan F., The crack problem for a nonhomogeneous plane, ASME Journal of Applied Mechanics, vol. 50, 1983, pp. 609-614.
[28] Reddy J.N., Mechanics of laminated Composite Plates and Shells Theory and Analysis, Second Edition, CRC Press, 2004, Boca Raton, FL.
[29] Chajes A., Principles of Structural Stability Theory, Prentice-Hall, 1974.
[30] Cassel A.C., Hobbs R.E., Numerical stability of dynamic relaxation analysis of non-linear structures, International Journal for Numerical Methods in Engineering, vol. 10, 1976. pp. 1407-1410.