Stress analysis of non-linearly variable thickness rotating disk in gas turbine engine using hyper-geometric method
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical EngineeringBehrooz Shahriari 1 , Nedasadat Seddighi 2
1 - Faculty of Mechanics, Malek Ashtar University of Technology, Isfahan, Iran
2 - Mechatronic Sanaat sepahan Co. , Isfahan, Iran
Keywords:
Abstract :
[1] Timoshenko, S. (1956). Strength of Materials: Part 2, Advanced Theory and Problems. van Nostrand.
[2] Grammel, R. (1936). Neue Lösungen des Problems der rotierenden Scheibe. Ingenieur-Archiv, 7(3), 137-139.
[3] Thompson, A. S. (1946). Stresses in rotating disks at high temperatures.
[4] Pirmoradian, M. (2015). Dynamic stability analysis of a beam excited by a sequence of moving mass particles. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 8(1), 41-49.
[5] Torkan, E., Pirmoradian, M., & Hashemian, M. (2017). Occurrence of parametric resonance in vibrations of rectangular plates resting on elastic foundation under passage of continuous series of moving masses. Modares Mechanical Engineering, 17(9), 225-236.
[6] Sterner, S. C., Saigal, S., Kistler, W., & Dietrich, D. E. (1994). A unified numerical approach for the analysis of rotating disks including turbine rotors. International journal of solids and structures, 31(2), 269-277.
[7] You, L., Tang, Y., Zhang, J., & Zheng, C. (2000). Numerical analysis of elastic–plastic rotating disks with arbitrary variable thickness and density, International Journal of Solids and Structures, 37(52), 7809-7820.
[8] Torkan, E., & Pirmoradian, M. (2019). Efficient higher-order shear deformation theories for instability analysis of plates carrying a mass moving on an elliptical path. Journal of Solid Mechanics, 11(4), 790-808.
[9] Biezeno, C. B., & Grammel, R. (2013). Technische dynamic. Springer-Verlag.
[10] Dubbel, H. (2013). DUBBEL: Taschenbuch für den Maschinenbau. Springer-Verlag.
[11] Stodola, A. (1924). Mit einem Anhang über die Aussichten der Wärmekraftmaschinen. Springer Berlin.
[12] Honegger, V. E. (1927). Festigkeitsberechnung von rotierenden konischen Scheiben. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 7(2), 120-128.
[13] Giovannozzi, R. (1956). Calculation, tabulation and uses of some functions occurring in the theory of the conical disc subjected to centrifugal and thermic stress. Proceedings of II Congresso Aeronautico Europeo (pp. 30.31-30.12), Scheveningen.
[14] Güven, U. (1995). Tresca's yield condition and the linear hardening rotating solid disk of variable thickness. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 75(10), 805-807.
[15] Orcan, Y., & Eraslan, A. N. (2002). Elastic–plastic stresses in linearly hardening rotating solid disks of variable thickness. Mechanics Research Communications, 29(4), 269-281.
[16] Eraslan, A. N., & Argeso, H. (2002). Limit angular velocities of variable thickness rotating disks. International Journal of Solids and Structures, 39(12), 3109-3130.
[17] Eraslan, A.N. (2005). A class of nonisothermal variable thickness rotating disk problems solved by hypergeometric functions. Turkish Journal of Engineering and Environmental Sciences, 29(4), 241-269.
[18] Vivio, F., & Vullo, V. (2007). Elastic stress analysis of rotating converging conical disks subjected to thermal load and having variable density along the radius. International Journal of Solids and Structures, 44(24), 7767-7784.
[19] Hojjati, M., & Jafari, S. (2008). Semi-exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian's decomposition methods. Part I: Elastic solution. International Journal of Pressure Vessels and Piping, 85(12), 871-878.
[20] Zenkour, A. M., & Mashat, D. S. (2010). Analytical and numerical solutions for a rotating annular disk of variable thickness. Applied Mathematics, 1(5), 431.
[21] Zenkour, A. M., & Mashat, D. S. (2011). Stress function of a rotating variable-thickness annular disk using exact and numerical methods. Engineering, 3(4), 422.
[22] Nejad, M. Z., Jabbari, M., & Ghannad, M. (2014). A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers. The Scientiic World Journal, Vol. 2014, ID 932743, 10 pages.
[23] Zamani Nejad, M., Jabbari, M., & Ghannad, M. (2014). Elastic Analysis of Rotating Thick Truncated Conical Shells Subjected to Uniform Pressure Using Disk Form Multilayers. ISRN Mechanical Engineering, Vol. 2014, http://dx.doi.org/10.1155/2014/764837
[24] Bagheri, E., Asghari, M., & Danesh, V. (2019). Analytical study of micro-rotating disks with angular acceleration on the basis of the strain gradient elasticity. Acta Mechanica, 230(9), 3259-78.
[25] Abdalla, H.M., Casagrande, D., & Moro, L. (2020). Thermo-mechanical analysis and optimization of functionally graded rotating disks. The Journal of Strain Analysis for Engineering Design, 55(5-6), 159-71.
[26] Sharma, D., Kaur, R., & Sharma, H. (2021). Investigation of thermo-elastic characteristics in functionally graded rotating disk using finite element method. Nonlinear Engineering, 10(1), 312-22.
[27] Vullo, V., & Vivio, F. (2013). Rotors: Stress analysis and design, Springer Science & Business Media.
[28] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.
[29] Gasper, G., Rahman, M., & George, G. (2004). Basic hypergeometric series. Cambridge university press.
[30] Aomoto, K., Kita, M., Kohno, T., & Iohara, K. (2011). Theory of hypergeometric functions. Springer.