Analysis of airflow on an airfoil using electro-hydrodynamic actuators
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical EngineeringMohammad Bigdeli 1 , Alireza Ansari 2 , Gholamreza Tathiri 3 , Vahid Monfared 4
1 - Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
2 - Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
3 - IAUZ
4 - IAUZ
Keywords:
Abstract :
[1] Malik, M., Weinstein, L., & Hussaini, M. (1983, January). Ion wind drag reduction. In 21st Aerospace Sciences Meeting (p. 231).
[2] Singh, K. P., Roy, S., & Gaitonde, D. V. (2006). Study of control parameters for separation mitigation using an asymmetric single dielectric barrier plasma actuator. Plasma Sources Science and Technology, 15(4), 735.
[3] Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G., & Cazalens, M. (2007). Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Experiments in fluids, 43(6), 917-928.
[4] Vlad, M., & Spineanu, F. (2015). Evolution of plasma turbulence beyond the quasilinear regime; a semi-analytical study. Romanian Reports in Physics, 67(3), 1074-1086.
[5] Diplasu, C., Giubega, G., Ungureanu, R., Cojocaru, G., Serbanescu, M., Marcu, A., & Zamfirescu, M. (2021). Commissioning experiment on laser-plasma electron acceleration in supersonic gas jet at cetal-pw laser facility. Romanian Reports in Physics, 73, 401.
[6] Šerá, B., Vanková, R., Roháček, K., & Šerý, M. (2021). Gliding Arc Plasma Treatment of Maize (Zea mays L.) Grains Promotes Seed Germination and Early Growth, Affecting Hormone Pools, but Not Significantly Photosynthetic Parameters. Agronomy, 11(10), 2066.
[7] Ramirez, C., Hauser, A. D., Vucic, E. A., & Bar-Sagi, D. (2019). Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature, 576(7787), 477-481.
[8] Anderson Jr, J. D. (2010). Fundamentals of aerodynamics. Tata McGraw-Hill Education.
[9] Castellanos, A. (Ed.). (1998). Electrohydrodynamics (Vol. 380). Springer Science & Business Media..
[10] Nagaraja, S., Yang, V., & Adamovich, I. (2013). Multi-scale modelling of pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry. Journal of Physics D: Applied Physics, 46(15), 155205.
[11] Babou, Y., Martin, E. N., & Peña, P. F. (2017, July). Simple body force model for Dielectric Barrier Discharge plasma actuator. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Milan, Italy (pp. 3-6).
[12] Critzos, C. C., Heyson, H. H., & Boswinkle, R. W. (1955). Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 to 180 degrees. National Advisory Committee for Aeronautics.
[13] Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low Reynolds numbers (10 4–10 5). Journal of Aircraft, 55(3), 1050-1061.
[14] Malhotra, A., Gupta, A., & Kumar, P. (2017). Study of static stall characteristics of a NACA 0012 aerofoil using turbulence modeling. In Innovative Design and Development Practices in Aerospace and Automotive Engineering (pp. 369-378). Springer, Singapore.
[15] Barnard, R. H., & Philpott, D. R. (2010). Aircraft flight: a description of the physical principles of aircraft flight. Pearson education.
[16] Pope, S. B., & Pope, S. B. (2000). Turbulent flows. Cambridge university press.
[17] Mathieu, J. M., & Scott, J. F. (2000). Turbulent flows.
[18] Eleni, D. C., Athanasios, T. I., & Dionissios, M. P. (2012). Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil. Journal of Mechanical Engineering Research, 4(3), 100-111.
[19] Spalart, P., & Allmaras, S. (1992, January). A one-equation turbulence model for aerodynamic flows. In 30th aerospace sciences meeting and exhibit (p. 439).
[20] Alipour, H., Karimipour, A., Safaei, M. R., Semiromi, D. T., & Akbari, O. A. (2017). Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E: Low-Dimensional Systems and Nanostructures, 88, 60-76.
[21] Akbari, O. A., Toghraie, D., & Karimipour, A. (2016). Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib. Advances in Mechanical Engineering, 8(4), 1687814016641016.
[22] Rezaei, O., Akbari, O. A., Marzban, A., Toghraie, D., Pourfattah, F., & Mashayekhi, R. (2017). The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E: Low-dimensional Systems and Nanostructures, 93, 179-189.
[23] Pourfattah, F., Motamedian, M., Sheikhzadeh, G., Toghraie, D., & Akbari, O. A. (2017). The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube. International Journal of Mechanical Sciences, 131, 1106-1116.
[24] Parsaiemehr, M., Pourfattah, F., Akbari, O. A., Toghraie, D., & Sheikhzadeh, G. (2018). Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica E: Low-Dimensional Systems and Nanostructures, 96, 73-84.
[25] Hosseinnezhad, R., Akbari, O. A., Afrouzi, H. H., Biglarian, M., Koveiti, A., & Toghraie, D. (2018). Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. Journal of Thermal Analysis and Calorimetry, 132(1), 741-759.
[26] Toghraie, D. (2016). Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface. Physica E: Low-Dimensional Systems and Nanostructures, 84, 454-465.
[27] Pourdel, H., Afrouzi, H. H., Akbari, O. A., Miansari, M., Toghraie, D., Marzban, A., & Koveiti, A. (2019). Numerical investigation of turbulent flow and heat transfer in flat tube. Journal of Thermal Analysis and Calorimetry, 135(6), 3471-3483.
[28] Bigdeli, M., & Monfared, V. (2020). Investigation and comparison of stall angle of airfoil naca 0012 in reynolds number of 3× 106 with k-ω sst, realizable k-ε, spalart-allmaras turbulence models. Comptes rendus de l’Académie bulgare des Sciences, 73(3).
[29] Bigdeli, M., Mohammadi, R., Bigdeli, J., & Monfared, V. (2021). Study on drag coefficient via dielectric barrier discharge (DBD) plasma actuators. Digest Journal of Nanomaterials & Biostructures (DJNB), 16(2).
[30] Monfared, V., Tathiri, G., Ansari, A., & Bigdeli, M. (2020). Reducing the Airflow Separation Region and Turbulence around the Airfoil using a Body Force. Journal of Mechanical Research and Application, 10(2), 34-47.