An Agglomerate Model for Evaluating the Electrochemical and Hydrodynamic Characteristics of a Proton Exchange Membrane Fuel Cell
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical EngineeringPouya Barnoon 1 , Davood Toghraie 2 , Babak Mehmandosut 3 , Mohammad Ali Fazilati 4 , S. Ali Eftekhari 5
1 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
2 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
3 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
4 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
5 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
Keywords:
Abstract :
[1] Barnoon, P., Toghraie, D., Mehmandoust, B., Fazilati, M. A., & Eftekhari, S. A. (2021). Comprehensive study on hydrogen production via propane steam reforming inside a reactor. Energy Reports, 7, 929-941.
[2] Baschuk, J. J., & Li, X. (2000). Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of power sources, 86(1-2), 181-196.
[3] Meng, H. (2007). A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. Journal of Power Sources, 168(1), 218-228.
[4] Das, P. K., Li, X., & Liu, Z. S. (2010). Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. International Journal of Hydrogen Energy, 35(6), 2403-2416.
[5] Leo, T. J., Durango, J. A., & Navarro, E. (2010). Exergy analysis of PEM fuel cells for marine applications. Energy, 35(2), 1164-1171.
[6] Kim, J. Y., Oh, T. K., Shin, Y., Bonnett, J., & Weil, K. S. (2011). A novel non-platinum group electrocatalyst for PEM fuel cell application. International journal of hydrogen energy, 36(7), 4557-4564.
[7] Xing, L. (2018). An agglomerate model for PEM fuel cells operated with non-precious carbon-based ORR catalysts. Chemical Engineering Science, 179, 198-213.
[8] Molaeimanesh, G. R., & Akbari, M. H. (2015). Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method. International Journal of Hydrogen Energy, 40(15), 5169-5185.
[9] Das, P. K., Li, X., & Liu, Z. S. (2008). A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells. Journal of Power Sources, 179(1), 186-199.
[10] Zhang, X., Ostadi, H., Jiang, K., & Chen, R. (2014). Reliability of the spherical agglomerate models for catalyst layer in polymer electrolyte membrane fuel cells. Electrochimica Acta, 133, 475-483.
[11] Wang, Q., Eikerling, M., Song, D., & Liu, Z. (2004). Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells. Journal of Electroanalytical Chemistry, 573(1), 61-69.
[12] Zhang, X., Gao, Y., Ostadi, H., Jiang, K., & Chen, R. (2014). A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells. Electrochimica Acta, 150, 320-328.
[13] Machado, B. S., Mamlouk, M., & Chakraborty, N. (2019). Three-dimensional agglomerate model of an anion exchange membrane fuel cell using air at the cathode–A parametric study. Journal of Power Sources, 412, 105-117.
[14] Jung, C. Y., Park, C. H., Lee, Y. M., Kim, W. J., & Yi, S. C. (2010). Numerical analysis of catalyst agglomerates and liquid water transport in proton exchange membrane fuel cells. International journal of hydrogen energy, 35(16), 8433-8445.
[15] Baca, C. M., Travis, R., & Bang, M. (2008). Three-dimensional, single-phase, non-isothermal CFD model of a PEM fuel cell. Journal of Power Sources, 178(1), 269-281.
[16] Scott, H. F. (2016). Elements of chemical reaction engineering. Prentice Hall.
[17] Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport phenomena (Vol. 1). John Wiley & Sons.
[18] Broka, K., & Ekdunge, P. (1997). Modelling the PEM fuel cell cathode. Journal of Applied Electrochemistry, 27(3), 281-289.
[19] Dannenberg, K., Ekdunge, P., & Lindbergh, G. (2000). Mathematical model of the PEMFC. Journal of Applied Electrochemistry, 30(12), 1377-1387.
[20] Barnoon, P., & Ashkiyan, M. (2020). Magnetic field generation due to the microwaves by an antenna connected to a power supply to destroy damaged tissue in the liver considering heat control. Journal of Magnetism and Magnetic Materials, 513, 167245.
[21] Shahsavar, A., Entezari, S., Toghraie, D., & Barnoon, P. (2020). Effects of the porous medium and water-silver biological nanofluid on the performance of a newly designed heat sink by using first and second laws of thermodynamics. Chinese Journal of Chemical Engineering, 28(11), 2928-2937.
[22] Shahsavar, A., Noori, S., Toghraie, D., & Barnoon, P. (2021). Free convection of non‐Newtonian nanofluid flow inside an eccentric annulus from the point of view of first‐law and second‐law of thermodynamics. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 101(5).
[23] Barnoon, P., Toghraie, D., Salarnia, M., & Karimipour, A. (2020). Mixed thermomagnetic convection of ferrofluid in a porous cavity equipped with rotating cylinders: LTE and LTNE models. Journal of Thermal Analysis and Calorimetry, 1-40.
[24] Nguyen, Q., Naghieh, A., Kalbasi, R., Akbari, M., Karimipour, A., & Tlili, I. (2021). Efficacy of incorporating PCMs into the commercial wall on the energy-saving annual thermal analysis. Journal of Thermal Analysis and Calorimetry, 143(3), 2179-2187.
[25] Chen, Z., Akbari, M., Forouharmanesh, F., Keshani, M., Akbari, M., Afrand, M., & Karimipour, A. (2020). A new correlation for predicting the thermal conductivity of liquid refrigerants. Journal of Thermal Analysis and Calorimetry, 1-6.
[26] Parsian, A., & Akbari, M. (2018). New experimental correlation for the thermal conductivity of ethylene glycol containing Al 2 O 3–Cu hybrid nanoparticles. Journal of Thermal Analysis and Calorimetry, 131(2), 1605-1613.
[27] Delshekasteh, N., & Kolahdooz, A. (2019). Statistical Approach on Microstructure and Hardness of Semi-Solid Cast Aluminum Alloy A380 Produced by Mechanical Vibration in Argon Gas Atmosphere. Founding Research Journal, 2(4), 275-286.
[28] Kolahdooz, A. (2019). Investigation of the hardness improvement for Al-A380 alloy using the controlled atmosphere in the mechanical stirring casting method. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(2), 225-233.
[29] Kolahdooz, A., & Latifi Rostami, S. A. (2018). Experimental and FEM Analysis of Ribs Defects on Composite Lattice Cylindrical Shells. Journal of Modern Processes in Manufacturing and Production, 7(3), 5-18.
[30] Gholami, O., Shakeri, M., Imen, S. J., & Jamshidi Aval, H. (2021). Small‐scale resistance seam welding of stainless steel bipolar plates of PEM fuel cells. International Journal of Energy Research.
[31] Vazifeshenas, Y., Sedighi, K., & Shakeri, M. (2020). Open Cell Metal Foam as Extended Coolant Surface–Fuel Cell Application. Fuel Cells, 20(2), 108-115.