Convergence of Legendre and Chebyshev multiwavelets in Petrov-Galerkin method for solving Fredholm integro-differential equations of high orders
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
1 - Department of Mathematics, Khomeinishahr Branch,
Islamic Azad University, Khomeinishahr/Isfahan, Iran
Keywords:
Abstract :
[1] Abdul-Majid, W. A. Z. W. A. Z. (2011). Linear and Nonlinear Integral Equations: Methods and Applications.
[2] Davis, H. T. (1962). Introduction to Nonlinear Differential Integral Equations, US Atomic Energy Commission, Washington, DC, 1960. 592 p. Reprint: Dover, NewYork.
[3] Kanwal, R. P. (2013). Linear integral equations. Springer Science & Business Media.
[4] Maleknejad, K., Rabbani, M., Aghazadeh, N., & Karami, M. (2009). A wavelet Petrov–Galerkin method for solving integro-differential equations. International Journal of Computer Mathematics, 86(9), 1572-1590.
[5] Mustapha, K. (2008). A Petrov--Galerkin method for integro-differential equations with a memory term. ANZIAM Journal, 50, C610-C624.
[6] Alpert, B. K. (1993). A class of bases in L2 for the sparse representation of integral operators. SIAM journal on Mathematical Analysis, 24(1), 246-262.
[7] Chen, Z., & Xu, Y. (1998). The Petrov--Galerkin and Iterated Petrov--Galerkin Methods for Second-Kind Integral Equations. SIAM Journal on Numerical Analysis, 35(1), 406-434.
[8] Chen, Z., Micchelli, C. A., & Xu, Y. (1997). The Petrov–Galerkin method for second kind integral equations II: multiwavelet schemes. Advances in Computational Mathematics, 7(3), 199-233.
[9] Maleknejad, K., & Karami, M. (2003, August). The Petrov—Galerkin method for solving second kind Fredholm integral equations. In 34th Iranian Mathematics Conference (Vol. 30).
[10] Bialecki, B., Ganesh, M., & Mustapha, K. (2004). A Petrov–Galerkin method with quadrature for elliptic boundary value problems. IMA journal of numerical analysis, 24(1), 157-177.
[11] Jiang, Z. H. (1992). W. Schaufelberger, block Pulse Functions and Their Applications in Control Systems.
[12] Maleknejad, K., & Sohrabi, S. (2007). Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Applied Mathematics and Computation, 186(1), 836-843.
[13] Shang, X., & Han, D. (2007). Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets. Applied Mathematics and Computation, 191(2), 440-444.
[14] Guf, J. S., & Jiang, W. S. (1996). The Haar wavelets operational matrix of integration. International Journal of Systems Science, 27(7), 623-628.
[15] Lepik, Ü. (2008). Solving integral and differential equations by the aid of non-uniform Haar wavelets. Applied Mathematics and Computation, 198(1), 326-332.
[16] Guner, O., & Bekir, A. (2017). Exp-function method for nonlinear fractional differential equations. Nonlinear Sci. Lett. A, 8(1), 41-49.
[17] Mahdy, A. M., & Mohamed, E. M. (2016). Numerical studies for solving system of linear fractional integro-differential equations by using least squares method and shifted Chebyshev polynomials. Journal of Abstract and Computational Mathematics, 1(1), 24-32.
[18] Mohyud-Din, S. T., Khan, H., Arif, M., & Rafiq, M. (2017). Chebyshev wavelet method to nonlinear fractional Volterra–Fredholm integro-differential equations with mixed boundary conditions. Advances in Mechanical Engineering, 9(3), 1687814017694802.
[19] Nazari, D., & Shahmorad, S. (2010). Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. Journal of Computational and Applied Mathematics, 234(3), 883-891.
[20] Ordokhani, Y., & Rahimi, N. (2014). Numerical solution of fractional Volterra integro-differential equations via the rationalized Haar functions. J. Sci. Kharazmi Univ, 14(3), 211-224.
[21] Pashayi, S., Hashemi, M. S., & Shahmorad, S. (2017). Analytical lie group approach for solving fractional integro-differential equations. Communications in Nonlinear Science and Numerical Simulation, 51, 66-77.
[22] Pedas, A., & Vikerpuur, M. (2021). Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels. Fractal and Fractional, 5(3), 90.
[23] Sahu, P. K., & Ray, S. S. (2016). WITHDRAWN: A novel Legendre wavelet Petrov–Galerkin method for fractional Volterra integro-differential equations.
[24] Riahi Beni, M. (2021). Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations. Iranian Journal of Numerical Analysis and Optimization.