Evaluation of Thermal Barrier Coating in Low Cycle Fatigue Life for Exhaust Manifold
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
1 - Assistant Professor, Sama Unit, Varamin Unit
Keywords:
Abstract :
[1] L. Meda, Y. Shu, and M. Romzek,“Exhaust System Manifold Development,” SAE Technical Paper No.2012-01-0643, 2012.
[2] P-O. Santacreu, L. Faivre, and A. Acher, “Life Prediction Approach for Stainless Steel Exhaust Manifold,” SAE Technical Paper No.2012-01-0732, 2012.
[3] Z. Yan, L. Zhien, W. Xiaomin, H. Zheng, and Y. Xu, “Cracking failure analysis and optimization on exhaust manifold of engine with CFD-FEA coupling, ” SAE Technical Paper No. 2014-01-1710, 2014.
[4] S. Sissaa, M. Giacopinia, and R. Rosia, “Low-Cycle Thermal Fatigue and High-Cycle Vibration Fatigue Life Estimation of a Diesel Engine Exhaust Manifold, ” Journal of Procedia Engineering, vol. 74 , 2014, pp. 105-112.
[5] M. Chen, Y. Wang, W. Wu, and J. Xin, “Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach,” SAE Technical Paper No.2014-01-2882, 2014.
[6] L. Zhien, X. Wang Z. Yan, X. Li, and Y. Xu, “Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial, ” SAE Technical Paper No.2014-01-1711, 2014.
[7] X. Li, W. Wang, X. Zou, Z. Zhang, W. Zhang, S. Zhang, T. Chen, Y. Cao, and Y. Chen, “Simulation and Test Research for Integrated Exhaust Manifold and Hot End Durability,” SAE Technical Paper No .2017-01-2432, 2017.
[8] M. Ekström, A. Thibblin, A. Tjernberg, C. Blomqvist, and S. Jonsson, “Evaluation of internal thermal barrier coatings for exhaust manifolds, ”Journal of surface & coating technology, vol. 272, 2015, pp. 198-212
[9] H. Ashouri, “Thermo-mechanical analysis of a coated cylinder head, ” Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, Vol 10, 2017, No. 2, 35-48.
[10] M. Rezvani rad, G.H. Farrahi, M. Azadi, and M. Ghodrati, “ Stress analysis of thermal barrier coating system subjected to out-of-phase thermo-mechanical loadings considering roughness and porosity effect,” Journal of surface & coating technology, vol. 262, 2015, pp. 77-86.
[11] G. Sivakumar, and S. Kumar, “Investigation on effect of yttria stabilized zirconia coated piston crown on performance and emission characteristic of diesel engine,” Alexandria engineering journal, doi.org/10.1016/j.aej.2014.08.003, 2014.
[12] F. Szmytka, P. Michaud, L. Rémy, and A. Köster, “Thermo-mechanical fatigue resistance characterization and materials ranking from heat-flux-controlled tests. Application to cast-irons for automotive exhaust part,” Journal of Fatigue, vol. 55, 2013, pp. 136–146
[13] A. Benoit, M.H. Maitournam, L. Rémy, and Y. Oger, “Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds,” Journal of Fatigue, vol. 38, 2012, pp. 65–74
[14] H. Ashouri, “Thermo-mechanical fatigue simulation of exhaust manifolds, ” Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, Vol 11, 2018, No. 2, 59-66.
[15] M.A.Salehnejad, A. Mohammadi, M. Rezaei, and H. Ahangari, “Cracking failure analysis of an engine exhaust manifold at high temperatures based on critical fracture toughness and FE simulation approach,” Journal of Engineering Fracture Mechanics, DOI.org/10.1016/j.engfracmech.2019.02.005, 2019, pp. 1-54
[16] A-D. Azevedo Cardoso, and D. Claudio Andreatta, “Thermomechanical Analysis of Diesel Engine Exhaust Manifold,” SAE Technical Paper No.2016-36-0258, 2016.
[17] G.M. Castro Güiza, W. Hormaza, R. Andres, E. Galvis, and L.M. Méndez Moreno, “Bending overload and thermal fatigue fractures in a cast exhaust Manifold, ” Journal of Engineering Failure Analysis, doi: 10.1016/j.engfailanal.2017.08.016, 2017.
[18] M. Durat, M. Kapsiz, E. Nart, F. Ficici, and A. Parlak, “The effects of coating materials in spark ignition engine design, Journal of material and design,” vol. 36, 2012, pp. 540-545.
[19] M. Rezvani rad, M., Azadi, G.H. Farrahi, “Thermal barrier coating effect on stress distribution of a diesel engine cylinder head,” 7th Iranian Student Conference on Mechanical Engineering, School of Mechanical Engineering, University of Tehran, Tehran, iran, 2013.
[20] M. Quazi, and S. Parashar, “Effect of Thermal Bearing Coating on Performance and Emission of Off Road Vehicle,” SAE International, Paper No. 2015-26-0065, 2015.
[21] J. Lemaitre, and J. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.
[22] J. L. Chaboche, “Time-independent constitutive theories for cyclic plasticity, ” International Journal of Plasticity, vol. 2, No. 2, 1986, pp. 149–188
[23] J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive theories,” International Journal of Plasticity, vol. 24, 2008, pp. 1642–1693
[24] J.B. Heywood, Internal combustion engine fundamentals, McGraw-Hill press, 1998.
[25] Y. He, P. Battiston, and A. Alkidas, “Thermal Studies in the Exhaust Manifold of a Turbocharged V6 Diesel Engine Operating Under Steady-State Conditions,” SAE Technical Paper No.2006-01-0688, 2006.
[26] R. Stephens, A. Fatemi, and H. Fuchs. Metal fatigue in engineering, 2nd edition, John Wiley, 2001.
[27] Y. L. Lee, J. Pan, R. B. Hathaway, and M. E. Barkey, Fatigue Testing and Analysis:Theory and Practice, Elsevier Butterworth-Heinemann, 2005.
[28] L. Wang, Y. Wang, W.Q. Zhang, X.G. Sun, J.Q. He, Z.Y. Pan and , C.H. Wang, 2012, “A novel structure design towards extremely low thermal conductivity for thermal barrier coatings –Experimental and mathematical study,” Materials and design, vol. 35, 2012, pp. 505-517.
[29] S. Rupangudi, C. Ramesh, and K.V. Veerabhadhrappa, “ Study of Effect of Coating of Piston on the Performance of a Diesel Engine,” SAE International, Paper No. 2014-01-1021, 2014.
[30] H. Ashouri, B. Beheshti and M.R. Ebrahimzadeh “Analysis of fatigue cracks of diesel engines cylinder heads using a two-layer viscoplasticity model with considering viscosity effects, ” Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, Vol 9, 2016, No. 1, 105-120.
[31] M. Azadi and G.H. Farrahi, “A new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach, ” Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, Vol 6, 2013, No. 1, 63-76.
[32] S. Trampert, T. Göcmez, and F. Quadflieg, “Thermomechanical Fatigue Life Prediction of Cast Iron Cylinder Heads, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, ” ICES2006-1420, 2006.
[33] A. Londhe and V. Yadav, “Thermo-structural Strength Analysis for Failure Prediction and Concern Resolution of an Exhaust Manifold,” CAE, R&D, Mahindra and Mahindra Ltd,Automotive Sector, Nasik, India, 2007