Thermo-mechanical fatigue simulation of exhaust manifolds
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
1 - Assistant Professor, Sama Unit, Varamin Unit
Keywords:
Abstract :
[1] L. Meda, Y. Shu, and M. Romzek,“Exhaust System Manifold Development,” SAE Technical Paper No.2012-01-0643, 2012.
[2] P-O. Santacreu, L. Faivre, and A. Acher, “Life Prediction Approach for Stainless Steel Exhaust Manifold,” SAE Technical Paper No.2012-01-0732, 2012.
[3] Z. Yan, L. Zhien, W. Xiaomin, H. Zheng, and Y. Xu, “Cracking failure analysis and optimization on exhaust manifold of engine with CFD-FEA coupling, ” SAE Technical Paper No. 2014-01-1710, 2014.
[4] S. Sissaa, M. Giacopinia, and R. Rosia, “Low-Cycle Thermal Fatigue and High-Cycle Vibration Fatigue Life Estimation of a Diesel Engine Exhaust Manifold, ” Journal of Procedia Engineering, vol. 74 , 2014, pp. 105-112.
[5] M. Chen, Y. Wang, W. Wu, and J. Xin, “Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach,” SAE Technical Paper No.2014-01-2882, 2014.
[6] L. Zhien, X. Wang Z. Yan, X. Li, and Y. Xu, “Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial, ” SAE Technical Paper No.2014-01-1711, 2014.
[7] X. Li, W. Wang, X. Zou, Z. Zhang, W. Zhang, S. Zhang, T. Chen, Y. Cao, and Y. Chen, “Simulation and Test Research for Integrated Exhaust Manifold and Hot End Durability,” SAE Technical Paper No .2017-01-2432, 2017.
[8] X. Liu, G. Quan, X. Wu, Z. Zhang, and C. Sloss, “Simulation of Thermomechanical Fatigue of Ductile Cast Iron and Lifetime Calculation,” SAE Technical Paper No.2015-01-0552, 2015.
[9] A-D. Azevedo Cardoso, and D. Claudio Andreatta, “Thermomechanical Analysis of Diesel Engine Exhaust Manifold,” SAE Technical Paper No.2016-36-0258, 2016.
[10] X. Wu, T. Quan, and C. Sloss, “Failure Mechanisms and Damage Model of Ductile Cast Iron under Low-Cycle Fatigue Conditions,” SAENo.Technical Paper 2013-01-0391, 2013.
[11] C. Delprete, R. Sesana, “Experimental characterization of a Si–Mo–Cr ductile cast iron,” Journal of Materials and Design, vol. 57, 2014, pp. 528-537.
[12] H. Yamagata, The science and technology of materials in automotive engines, Woodhead Publishing Limited Cambridge, UK, 2005.
[13] A.A Partoaa, M. Abdolzadeh, and M. Rezaeizadeh, “Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine,” DOI: 10.1007/s11771-017-3457-1, 2017, pp. 546-559
[14] F. Ahmad, V. Tomer, A. Kumar, and P.P. Patil, “FEA Simulation Based Thermo-mechanical Analysis of Tractor Exhaust Manifold,” Springer India, CAD/CAM, Robotics and Factories of the Future, Lecture Notes in Mechanical Engineering, DOI 10.1007/978-81-322-2740-3-18 , 2016, pp. 173-181.
[15] M. Nour, H. Kosaka, M. Bady, S. Sato, and A.K. Abdel-Rahman, “Combustion and emission characteristics of DI diesel engine fuelled by ethanol injected into the exhaust manifold,” Fuel Processing Technology, vol. 164, 2017, pp. 33–50
[16] F. Szmytka, P. Michaud, L. Rémy, and A. Köster, “Thermo-mechanical fatigue resistance characterization and materials ranking from heat-flux-controlled tests. Application to cast-irons for automotive exhaust part,” Journal of Fatigue, vol. 55, 2013, pp. 136–146
[17] A. Benoit, M.H. Maitournam, L. Rémy, and Y. Oger, “Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds,” Journal of Fatigue, vol. 38, 2012, pp. 65–74
[18] M. Mashayekhi, A. Taghipour, A. Askari, and M. Farzin, “Continuum damage mechanics application in low-cycle thermal fatigue,” International Journal of Damage Mechanics, vol. 22, no.2, 2012. pp. 285-300.
[19] M.A.Salehnejad, A. Mohammadi, M. Rezaei, and H. Ahangari, “Cracking failure analysis of an engine exhaust manifold at high temperatures based on critical fracture toughness and FE simulation approach,” Journal of Engineering Fracture Mechanics, DOI.org/10.1016/j.engfracmech.2019.02.005, 2019, pp. 1-54
[20] H.Mahabadipour, R.S. Krishnan, and K.K. Srinivasan, “Investigation of exhaust flow and exergy fluctuations in a diesel engine,” DOI .org/10.1016/j.applthermaleng.2018.10.109, Applied Thermal Engineering, 2018, pp. 1-37
[21] S. Qiu, Z.C Yuan, R.X. Fan, and J. Liu, “Effects of exhaust manifold with different structures on sound orderdistribution in exhaust system of four-cylinder engine, ” Journal of Applied Acoustics, vol.145, 2019, pp. 176–183
[22] S. Vyas, A. Patidar, S. Kandreegula, and U. Gupta, “Multi-Physics Simulation of 6-Cylinder Diesel Engine Exhaust Manifold for Investigation of Thermo-Mechanical Stresses,” SAE Technical Paper No.2015-26-0182, 2015.
[23] A. El-Sharkawy, A. Sami, A. Hekal, D. Arora, and M. Khandaker, “Transient Modeling of Vehicle Exhaust Surface Temperature,” SAE No.Technical Paper 2016-01-0280, 2016.
[24] G.M. Castro Güiza, W. Hormaza, R. Andres, E. Galvis, and L.M. Méndez Moreno, “Bending overload and thermal fatigue fractures in a cast exhaust Manifold, ” Journal of Engineering Failure Analysis, doi: 10.1016/j.engfailanal.2017.08.016, 2017.
[25] M. Ekström, A. Thibblin, A. Tjernberg, C. Blomqvist, and S. Jonsson, “Evaluation of internal thermal barrier coatings for exhaust manifolds, ”Journal of surface & coating technology, vol. 272, 2015, pp. 198-212
[26] J. Lemaitre, and J. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.
[27] J. L. Chaboche, “Time-independent constitutive theories for cyclic plasticity, ” International Journal of Plasticity, vol. 2, No. 2, 1986, pp. 149–188
[28] J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive theories,” International Journal of Plasticity, vol. 24, 2008, pp. 1642–1693
[29] A. Deshpande, S.B. Leen, and T.H. Hyde, “Experimental and numerical characterization of the cyclic thermo-mechanical behavior of a high temperature forming tool alloy,” ASME Journal of Manufacturing Science and Engineering, vol. 132, 2010, pp. 1-12.
[30] J.B. Heywood, Internal combustion engine fundamentals, McGraw-Hill press, 1998.
[31] A.C. Alkidas, P.A. Battiston, and D.J. Kapparos, “Thermal Studies in the Exhaust System of a Diesel-Powered Light-Duty Vehicle,” SAE Technical Paper No.2004-01-0050, 2004.
[32] Y. He, P. Battiston, and A. Alkidas, “Thermal Studies in the Exhaust Manifold of a Turbocharged V6 Diesel Engine Operating Under Steady-State Conditions,” SAE Technical Paper No.2006-01-0688, 2006.
[33] G.Q. Sun, and D.G Shang, “Prediction Of Fatigue Lifetime Under Multiaxial Cyclic Loading Using Finite Element Analysis,” Journal of Material and Design, vol. 31, 2010, pp. 126-133.
[34] ABAQUS/CAE(v6.13-1), User’ s Manual , 2013.
[35] N. Mamiya, T. Masuda, and Y. Yasushi Noda, 2002, “Thermal Fatigue Life of Exhaust ManifoldsPredicted by Simulation,” SAE Technical Paper No.2002-01-0854, 2002.