بررسی اثر عملیات پیرسازی بر روی رفتار سایشی آلیاژ تیتانیوم
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringامیر قیصریان 1 , محمود عباسی 2
1 - کارشناس ارشد، شناسایی و انتخاب مواد مهندسی، دانشگاه کاشان، کاشان، ایران.
2 - استادیار دانشکده مهندسی، گروه مهندسی مواد و متالورژی، دانشگاه کاشان، کاشان، ایران.
Keywords: سایش, پیرسازی, آلیاژ تیتانیوم Ti-6Al-4V, آنیل میانی,
Abstract :
با توجه به ویژگیهای مورد توجه آلیاژ تیتانیوم Ti-6Al-4V از قبیل نسبت استحکام به وزن بالا و مقاومت به خوردگی مناسب، این آلیاژ استفاده زیادی در صنایع نظامی و پزشکی دارد. در این تحقیق، به بررسی اثر عملیات پیرسازی بر ریزساختار و رفتار سایشی آلیاژ Ti-6Al-4V با استفاده از آزمون سایش پین بر دیسک پرداخته شد. نمونههایی از آلیاژ مورد مطالعه در دو دمای مختلف، 950 و 1050 درجه سانتیگراد مورد عملیات انحلالی قرار گرفتند و سپس نمونهها سرد و پیرسازی شدند. بعضی از نمونهها پیش از پیرسازی، در دمای C 700 آنیل شدند. نتایج نشان داد که رفتار سایشی آلیاژ تیتانیوم مورد مطالعه از قانون آرچارد تبعیت نکرد و پیرسازی علیرغم افزایش سختی، سبب کاهش مقاومت به سایش شد. همچنین مشاهده شد که انجام آنیل میانی پیش از پیرسازی اگرچه سبب تسریع تجزیه فاز مارتنزیت تشکیل شده در مرحله کوئنچ و تشکیل ذرات فاز آلفا (α2) شد و در نتیجه سختی پس از پیرسازی را افزایش داد اما در نهایت کاهش مقاومت به سایش را سبب شد. بررسی میکروسکوپ الکترون روبشی (SEM) و پراش اشعه ایکس (XRD) نشان داد که مهمترین دلیل کاهش مقاومت به سایش با انجام پیرسازی، حضور فاز سخت آلفا (α2) در کنار فاز نرم بتا در ریزساختار نمونه پیرسازی شده بود.
[1] Tsuji, N., Tanaka, S. and Takasugi, T., Effect of combined plasma-carburizing and deep-rolling on notch fatigue property of Ti-6Al-4V alloy, Materials Science and Engineering: A, Vol. 499, 2009, pp. 482-488.
[2] Guan, R.G., et al., Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process, Materials & Design, Vol. 36, 2012, pp. 796-803.
[3] López, J.G., et al., Effect of small temperature variations on the tensile behaviourof Ti-6Al-4V, Procedia Engineering, Vol. 10, 2011, pp. 2330-2335.
[4] Matsumoto, H., et al., Room-temperature ductility of Ti–6Al–4V alloy with α′ martensite microstructure, Materials Science and Engineering: A, Vol. 528, 2011, pp. 1512-1520.
[5] Semiatin, S. L., Bieler, T.R., The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure, Acta Materialia, Vol. 49, 2001, pp. 3565-3573.
[6] Adamus, J., Lacki, P., Forming of the titanium elements by bending, Computational Materials Science, Vol. 50, 2011, pp. 1305-1309.
[7] Shidid, D.P., et al., Study of effect of process parameters on titanium sheet metal bending using Nd: YAG laser, Optics & Laser Technology, Vol. 47, 2013, pp. 242-247.
[8] Knezevic, M., et al., Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements, Materials Science and Engineering: A, Vol. 564, 2013, pp. 116-126.
[9] Young, L., et al., Dry sliding wear of Ti-6Al-4V alloy in air and vaccum, Transaction of Nonferrous Metals Society of China, Vol. 13, 2003, pp. 1137-1140.
[10] Özyürek, D., Tekeli, S., Wear properties of titanium and Ti6Al4V titanium alloy by mechanical milling, High Temperature Materials and Processes, Vol. 30, 2011, pp. 175-180.
[11] Straffelini, G., Molinari, A., Dry sliding wear of Ti–6Al–4V alloy as influenced by the counterface and sliding conditions, Wear, Vol. 236, 1999, pp. 328-338.
[12] Borgioli, F., et al., Improvement of wear resistance of Ti–6Al–4V alloy by means of thermal oxidation, Materials Letters, Vol. 59, 2005, pp. 2159-2162.
[13] Fidan, S., et al., Effect of heat treatment on erosive wear behaviour of Ti6Al4V alloy, Materials Science and Technology, Vol. 29, 2013, pp. 1088-1094.
[14] Molinari, A., et al., Dry sliding wear mechanisms of the Ti6Al4V alloy, Wear, Vol. 208, 1997, pp. 105-112.
[15] Zum Gahr, K.H., Wear by hard particles, Tribology International, Vol. 31, 1998, pp. 587-596.
[16] ASTM E3-01, Standard Practice for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2001.
[17] ASTM G99-05(2010), Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2010.
[18] Froes, F.H., Titanium: Physical metallurgy, processing, and applications, ASM International, 2015, pp. 145.
[19] Yu, H., et al., Influence of heat treatment on hot-rolled sheet forming of Ti6Al4V alloy, International Conference on Materials Science and Application (ICMSA 2015), Thailand, 2015, pp. 65-72.
[20] Gu, K., et al., Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti6Al4V alloy, Materials Science and Engineering: A, Vol. 584, 2013, pp. 170-176.
[21] Cvijović-Alagić, I., et al., Influence of the heat treatment on the tribological characteristics of the Ti-based alloy for biomedical applications, Tribology in Industry, Vol. 31, 2009, pp. 17-22.
[22] Archard, J., Contact and rubbing of flat surfaces, Journal of Applied Physics, Vol. 24, 1953, pp. 981-988.
[23] Hadke, S., et al., Microstructure evolution and abrasive wear behavior of Ti-6Al-4V alloy, Journal of Materials Engineering and Performance, Vol. 24, 2015, pp. 3969-3981.
[24] Sahoo, R., Jha, B.B., Sahoo, T.K., Dry sliding wear behaviour of Ti–6Al–4V alloy consisting of bimodal microstructure, Transactions of the Indian Institute of Metals, Vol. 67, 2014, pp. 239-245.
[25] Suh, N.P., Sridharan, P., Relationship between the coefficient of friction and the wear rate of metals, Wear, Vol. 34, 1975, pp. 291-299.
[26] Jahanmir, S., Suh, N.P., Mechanics of subsurface void nucleation in delamination wear, Wear, Vol. 44, 1977, pp. 17-38.
[27] Suh, N.P., The delamination theory of wear, Wear, Vol. 25, 1973, pp. 111-124.
[28] Ashby, M.F., Work hardening of dispersion-hardened crystals, Philosophical Magazine, Vol. 14, 1966, pp. 1157-1178.