بررسی آزمایشگاهی اثر نانوذرات جامد هیبریدی نانولوله کربنی و اکسید منیزیم بر هدایت حرارتی اتیلن گلیکول
Subject Areas :
Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
مسعود وفایی
1
,
مسعود افرند
2
1 - کارشناس ارشد، گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
2 - استادیار، گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
Received: 2016-01-21
Accepted : 2016-05-07
Published : 2016-10-22
Keywords:
اتیلن گلیکول,
هدایت حرارتی,
نانوسیال هیبریدی,
اکسید منیزیم-نانولوله کربنی,
رابطه تجربی,
Abstract :
در دهه اخیر نانو سیالات پیشرفته ی جدیدی که از ذرات مختلف تشکیل شده اند مورد توجه محققان قرار گرفته اند. این گونه از نانوسیالات، که به نانوسیالات هیبریدی معروف هستند، عموما از ترکیب دوگونه مختلف نانوذرات ترکیب شده در سیال پایه به دست می آیند. در این مقاله، بررسی آزمایشگاهی اثر نانوذرات جامد هیبریدی نانولوله کربنی و اکسید منیزیم بر ضریب هدایت حرارتی اتیلن گلیکول ارائه شده است. آزمایشها در بازه دمایی 25 تا 50 درجه سانتی گراد برروی نمونه هایی با کسر حجمی 05/0٪، 1/0٪، 15/0٪، 2/0٪، 4/0٪ و 6/0٪ انجام شد. اندازه گیری ها نشان داد که با افزایش مقدار نانوذرات و افزایش دما، ضریب هدایت حرارتی تا 3/23٪ افزایش می یابد. در پایان یک رابطه تجربی جدید به منظور پیش بینی ضریب هدایت حرارتی ارائه شد و تحلیل حاشیه انحراف برای آن پیشنهادی انجام شد. نتایج این تحلیل ها نشان داد که حداکثر حاشیه انحراف 95/0٪ بود که بیانگر دقت قابل قبول رابطه پیشنهادی برای پیش بینی مقادیر ضریب هدایت حرارتی نانو سیال است
References:
Lee G., Kim C. K., Lee M. K., Rhee C. K., Kim S., Kim C., Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method, Thermochimica Acta, 542, 2012, pp. 24–27.
Yiamsawasd T., Selim Dalkilic A., Wongwises S., Measurement of the thermal conductivity of titania and alumina nanofluids, Thermochimica Acta, 545, 2012, pp. 48–56.
Das S. K., Putra N., Thiesen P., RoetzelW., Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125, 2003, pp. 567–574.
Li C. H., Peterson G. P., The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, Journal of Applied Physics, 101, 2007, 044312.
Chandrasekar M., Suresh S., Chandra Bose A., Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Experimental Thermal and Fluid Science, 34 2010, 210–216.
Sundar L. S., Singh M. K., Sousa A. C. M., Investigation of thermal conductivity and viscosity of Fe3O4nanofluid for heat transfer applications, International Communications in Heat and Mass Transfer, 44, 2013, 7–14.
Jeong J., Li C., Kwon Y., Lee J., Hyung Kim S., Yun R., Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, International Journal of Refrigeration, 36, 2013, 2233-2224.
Hemmat Esfe M., Saedodin S., Bahiraei M., Toghraie D., Mahian O., Wongwises S., Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network, Journal of Thermal Analysis and Calorimetry, 118 (2014) 287–294.
Hemmat Esfe M., Saedodin S., Asadi A., Karimipour A., Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids: Finding a critical temperature, Journal of Thermal Analysis and Calorimetry, 120, 2015, pp. 1145-1149
Hemmat Esfe M., Saedodin S., Naderi A., Alirezaie A., Karimipour A., Wongwises S., Goodarzi M., Dahari M., Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods, International Communications in Heat and Mass Transfer, 63, 2015, 35–40.
Assael M. J., Chen C. F., Metaxa I., Wakeham W. A., Thermal conductivity of carbon nanotube suspensions in water, International Journal of Thermophysics, 25, 2004, pp. 971–985.
Hwang Y. J., Ahn Y. C., Shin H. S., Lee C. G., Kim G. T., Park H. S., Lee J. K., Investigation on characteristics of thermal conductivity enhancement of nanofluids, Current Applied Physics, 6, 2006, pp. 1068–1071.
Glory J., Bonetti M., Helezen M., Hermite M. M. L., Reynaud C., Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes, Journal of Applied Physics, 103, 2008, 094309.
Harish S., Ishikawa K., Einarsson E., Aikawa S., Chiashi S., Shiomi J., Maruyama S., Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions, International Journal of Heat and Mass Transfer, 55, 2012, pp. 3885–3890.
Hemmat Esfe M., Saedodin S., Mahian O., Wongwises S., Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids, International Communications in Heat and Mass Transfer, 58, 2014, pp. 176–183.
Hemmat Esfe M., Saedodin S., Mahian O., Wongwises S., Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations, International Journal of Heat and Mass Transfer, 73, 2014, pp. 186–194.
Baghbanzadeh M., Rashidi A., Rashtchian D., Lotfi R., Amrollahi A., Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids, Thermochimica Acta, 549, 2012, pp. 87–94.
Munkhbayar B., Tanshen M. R., Jeoun J., Chung H., Jeong H., Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics, Ceramics International, 39, 2013, pp. 6415–6425.
Sundar S. L., Singh M. K., Sousa A. C. M., Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids, International Communications in Heat and Mass Transfer, 52, 2014, pp. 73–83.
Hemmat Esfe M., Wongwises S., Naderi A., Asadi A., Safaei M. R., Rostamian H., Dahari M., Karimipour A., Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation, International Communications in Heat and Mass Transfer, 66, 2015, pp. 100–104.
Liu M.S., Lin M. C. C., Wang C. C., Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system, Nanoscale Research Letters, 6, 2011, p. 297.