مطالعه انتقال حرارت نانوسیال آب-اکسید تیتانیوم در میکروکانال مثلثی با دندانه نیمه چسبان- نیمه ناقص
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringموسی حیدری 1 , داود طغرایی 2 , امید علی اکبری 3
1 - کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر، ایران، اصفهان.
2 - استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر، ایران، اصفهان.
3 - باشگاه پژوهشگران جوان و نخبگان، واحد خمینی شهر، دانشگاه آزاد اسلامی، واحد خمینی شهر، ایران
Keywords: مطالعه انتقال حرارت نانوسیال آب-اکسید تیتانیوم در میکروکانال مثلثی با دندانه نیمه چسبان- نیمه ناقص,
Abstract :
در پژوهش عددی حاضر انتقال حرارت و جریان آرام نانوسیال در داخل یک میکروکانال سه بعدی با مقطع مثلثی شبیه سازی شده است. به منظور افزایش انتقال حرارت از دیواره-های کانال، دندانههای نیمه چسبان- نیمه ناقص در داخل کانال قرار داده شده و تاثیر هندسه دندانهها و تعداد آنها مورد مطالعه قرار گرفته است.در مطالعهی حاضر، سیال پایه آب بوده و تاثیر کسر حجمی نانوذره اکسید تیتانیوم بر میزان انتقال حرارت و فیزیک جریان مورد بررسی قرار گرفته است. نتایج ارائه شده شامل توزیع عدد ناسلت در کانال، ضریب اصطکاک و ضریب عملکرد حرارتی برای هر یک از حالتهای مختلف میباشد. نتایج به دست آمده نشان میدهد، وجود دندانهها بر فیزیک جریان تاثیرگذار هستند و میزان تاثیر آنها شدیداً به عدد رینولدز جریان وابسته است. اﺳﺘﻔﺎده از دﻧﺪاﻧﻪ در ﻣﯿﮑﺮوﮐﺎﻧﺎلﻫﺎ ﺑﺎﻋﺚ اﻓﺰاﯾﺶ ﻧﺮخ اﻧﺘﻘﺎل ﺣﺮارت و ﮐﺎﻫﺶ ﮔﺮادﯾﺎن دﻣﺎﯾﯽ در ﺑﯿﻦ ﻻﯾﻪﻫﺎی ﺳﯿﺎل ﺧﻨﮏ ﮐﻨﻨﺪه ﻣﯽﺷﻮد و همچنین وﺟﻮد ﻧﺎﻧﻮذرات در ﺳﯿﺎل ﺧﻨﮏ ﮐﻨﻨﺪه ﻧﯿﺰ در اﻓﺰاﯾﺶ اﻧﺘﻘﺎل ﺣﺮارت موثر است، به طوریکه ﺑﺎ اﻓﺰاﯾﺶ ﻋﺪد رﯾﻨﻮﻟﺪز، میزان اثرگذاری نانوذره نیز در اﻓﺰاﯾﺶ انتقال حرارت، افزایش مییابد.
[1] Bergles, A.E., Some perspectives on enhanced heat transfer, second-generation heat transfer technology, J. Heat Transf. 110 (2000) 1082.
[2] Siddique M., Khaled, A.R.A., Abdulhafiz, N. I., Boukhary A. Y., “Recent advances in heat transfer enhancements”: A review report, International Journal of Chemical Engineering, Vol. 2010, pp. 1-28.
[3] Bergles, A. E., The implication and challenges of enhanced heat transfer for the chemical process industries, ICHemE, Vol. 79, 2001, pp. 437 -444.
[4] Sakanova, A., Chan Chun Keian, Jiyun Zhao Performance improvements of microchannel heat sink using wavy channel and nanofluids, International Journal of Heat and Mass Transfer, Vol. 89, 2015, pp. 59 –74.
[5] Rimbault, B., N, C.T., Galanis, N, Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink, International Journal of Thermal Sciences, Vol. 84, 2014, pp. 275 –292.
[6] Li, P., D. Zhang, Yonghui Xie. Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion, International Journal of Heat and Mass Transfer, Vol. 73, 2014, pp. 456 – 467.
[7] Huichun Liu, H., Wang J., “Numerical investigation on synthetical performances of fluid flow and heattransfer of semiattached rib-channels”, Int. J. Heat Mass Transfer, Vol. 55, 2012, pp. 234-243.
[8] Hatami M., Ganji, D. D., Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Convers. Manag, Vol. 78, 2014, pp. 347 – 358.
[9] Sheikhzadeh, G. A., Ebrahim Qomi, M., Hajialigol N., Fattahi A., “Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel”, Int. J.Nano Dimens, Vol. 3, 2013, pp. 281–288.
[10] Abu-Nada, E., Masoud, Z., Hijazi, A., Natural Convection Heat Transfer Enhance-ment in Horizontal Concentric Annuli using Nanofluids, Int. Comm. in Heat and Mass Transfer , Vol. 35, 2008, pp. 657– 665
[11] Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solution, J. Chem. Phys. , vol. 20, pp. 571–581, 1952.
[12] Aminossadati S. M., Ghasemi B., “Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure, European Journal of Mechanics B/Fluids, No. 28,2009, pp. 630-640.
[13] Patel, H. E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K.A Micro-Convection Model for Thermal Conductivity of Nanofluids, Pramana — J. Phys, vol. 65, no. 5, pp. 863–869, 2005.
[14] Liu, H., Wang, J., Numerical investigation on synthetical performances of fluid flow and heat transfer of semiattached rib-channels, International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 575 –583
[15] Mital, M., Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels, Applied Thermal Engineering, Vol. 50, 2013, pp. 429 – 436.
[16] Lewis, F. M., Princeton, N. J., Friction factors for pipe flow, Transaction of the A.S.M.E. Vol. 1, 1944, pp. 671- 684
[17] Papautsky, I., Gale, B. K., Mohanty, S., Ameel, T. A., Frazier, A. B., Effects of rectangular microchannel aspect ratio on laminar friction constant, Proc. SPIE, Microfluidic Devices and Systems,Vol. 11, 1999, pp. 147-158.
[18] Aminossadati, S. M., Raisi, A., Ghasemi, B., “Effects of magnetic field on nanofluid forced convection in a partially heated microchannel”, International Journal of Non-Linear Mechanics, Vol. 46, 2011, pp. 1373–1382
[1] Bergles, A.E., Some perspectives on enhanced heat transfer, second-generation heat transfer technology, J. Heat Transf. 110 (2000) 1082.
[2] Siddique M., Khaled, A.R.A., Abdulhafiz, N. I., Boukhary A. Y., “Recent advances in heat transfer enhancements”: A review report, International Journal of Chemical Engineering, Vol. 2010, pp. 1-28.
[3] Bergles, A. E., The implication and challenges of enhanced heat transfer for the chemical process industries, ICHemE, Vol. 79, 2001, pp. 437 -444.
[4] Sakanova, A., Chan Chun Keian, Jiyun Zhao Performance improvements of microchannel heat sink using wavy channel and nanofluids, International Journal of Heat and Mass Transfer, Vol. 89, 2015, pp. 59 –74.
[5] Rimbault, B., N, C.T., Galanis, N, Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink, International Journal of Thermal Sciences, Vol. 84, 2014, pp. 275 –292.
[6] Li, P., D. Zhang, Yonghui Xie. Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion, International Journal of Heat and Mass Transfer, Vol. 73, 2014, pp. 456 – 467.
[7] Huichun Liu, H., Wang J., “Numerical investigation on synthetical performances of fluid flow and heattransfer of semiattached rib-channels”, Int. J. Heat Mass Transfer, Vol. 55, 2012, pp. 234-243.
[8] Hatami M., Ganji, D. D., Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Convers. Manag, Vol. 78, 2014, pp. 347 – 358.
[9] Sheikhzadeh, G. A., Ebrahim Qomi, M., Hajialigol N., Fattahi A., “Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel”, Int. J.Nano Dimens, Vol. 3, 2013, pp. 281–288.
[10] Abu-Nada, E., Masoud, Z., Hijazi, A., Natural Convection Heat Transfer Enhance-ment in Horizontal Concentric Annuli using Nanofluids, Int. Comm. in Heat and Mass Transfer , Vol. 35, 2008, pp. 657– 665
[11] Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solution, J. Chem. Phys. , vol. 20, pp. 571–581, 1952.
[12] Aminossadati S. M., Ghasemi B., “Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure, European Journal of Mechanics B/Fluids, No. 28,2009, pp. 630-640.
[13] Patel, H. E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K.A Micro-Convection Model for Thermal Conductivity of Nanofluids, Pramana — J. Phys, vol. 65, no. 5, pp. 863–869, 2005.
[14] Liu, H., Wang, J., Numerical investigation on synthetical performances of fluid flow and heat transfer of semiattached rib-channels, International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 575 –583
[15] Mital, M., Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels, Applied Thermal Engineering, Vol. 50, 2013, pp. 429 – 436.
[16] Lewis, F. M., Princeton, N. J., Friction factors for pipe flow, Transaction of the A.S.M.E. Vol. 1, 1944, pp. 671- 684
[17] Papautsky, I., Gale, B. K., Mohanty, S., Ameel, T. A., Frazier, A. B., Effects of rectangular microchannel aspect ratio on laminar friction constant, Proc. SPIE, Microfluidic Devices and Systems,Vol. 11, 1999, pp. 147-158.
[18] Aminossadati, S. M., Raisi, A., Ghasemi, B., “Effects of magnetic field on nanofluid forced convection in a partially heated microchannel”, International Journal of Non-Linear Mechanics, Vol. 46, 2011, pp. 1373–1382