Optimization of Effective Parameters in the Stir Friction Extrusion Process on Porosity and Tensile Strength of SiC Ceramic Particles Reinforced AA1050 Aluminum Matrix Composite
Subject Areas :Mojtaba Soleimanipour 1 , Reza Abedinzadeh 2 , Seyyed Ali Eftekhari 3 , Ali Heidari 4
1 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran.
2 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran
3 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran.
4 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran.
Keywords: Optimization, Porosity, Friction Stir Extrusion, AA1050/SiC composite, Ultimate tensile Strength,
Abstract :
This research, involved dynamic optimization of process parameters on the porosity and tensile strength of AA1050/SiC aluminum composite wires produced by friction stir extrusion (FSE) was carried out. In this regard, SiC ceramic particles reinforced AA1050 composite samples were produced using the FSE process. Also, response surface methodology (RSM) was used to design of experiment. The rotational speed of the punch, extrusion force, and reinforcement percentage weight were determined as input variables of the process. The porosity and tensile strength of produced composite samples were determined as response variables. Analysis of variance (ANOVA) and regression analysis were used to analyze the obtained data. The results showed that rotational speed, extrusion force with second-order effects, and reinforcement percentage with linear effects were effective on the tensile strength and porosity of composite samples. Also, the optimization of FSE process parameters to reach the minimum percentage of porosity and maximum tensile strength was performed using the desirability method. Finally, the optimization results were evaluated based on the validation test. Also, by achieving the maximum value of the desirability function (0.9852), the optimal conditions of process input variables were a rotational speed of 787 rpm, an extrusion force of 11.7 kN, and a reinforcement percentage of 3.86% to simultaneously achieve the maximum ultimate tensile strength (155.4 MPa) and minimum porosity percentage (0.45%). Also, the values obtained from the optimization were compared with the experimental values and the accuracy of the results in tensile strength and porosity were confirmed with 2.57% and 6.78% errors, respectively.
- مراجع
[1] P. K. Sahu & et al., "Wear behavior of the friction stir alloyed AZ31 Mg at different volume fractions of Al particles reinforcement and its enhanced quality attributes", Tribology International, vol. 146, pp. 106268, 2020.
[2] F. Nascimento & et al., "Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys", Materials Science and Engineering A, vol. 506, no. 1-2, pp. 16-22, 2009.
[3] R. S. Mishra, Z. Ma & I. Charit, "Friction stir processing a novel technique for fabrication of surface composite", Materials Science and Engineering A, vol. 341, no. 1-2, pp. 307-310, 2003.
[4] M. K. Besharati-Givi & P. Asadi, "Advances in friction-stir welding and processing", Elsevier, 2014.
[5] L. Karthikeyan, V. Senthil Kumar & K. Padmanabhan, "Investigations on superplastic forming of friction stir-processed AA6063-T6 aluminum alloy", Materials and Manufacturing Processes, vol. 28, no. 3, pp. 294-298, 2013.
[6] D. Ahmadkhaniha & P. Asadi, "Mechanical alloying by friction stir processing", in Advances in Friction Stir Welding and Processing, Woodhead Publishing London. pp. 387-425, 2014.
[7] P. Asadi & et al., "Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP", Journal of Materials Engineering and Performance, vol. 20, pp. 1554-1562, 2011.
[8] P. Asadi, R. Mahdavinejad & S. Tutunchilar, "Simulation and experimental investigation of FSP of AZ91 magnesium alloy", Materials Science and Engineering: A, vol. 528, no. 21, pp. 6469-6477, 2011.
[9] N. Yuvaraj & S. Aravindan, "Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization'', Journal of Materials Research and Technology, vol. 4, no. 4, pp. 398-410, 2015.
[10] A. Kurt, I. Uygur & E. Cete, "Surface modification of aluminium by friction stir processing", Journal of Materials Processing Technology, vol. 211, no. 3, pp. 313-317, 2011.
[11] S. Ahmadifard & et al., "Fabrication of A5083/SiC surface composite by friction stir processing and its characterization", Journal of Science and Technology of Composites, vol. 2, no. 4, pp. 31-36, 2016.
[12] X. Li & et al., "Strain and texture in friction extrusion of aluminum wire", Journal of Materials Processing Technology, vol. 229, pp. 191-198, 2016.
[13] R. A. Behnagh & et al., "Production of wire From AA7277 aluminum chips via friction-stir extrusion (FSE)", Metallurgical and Materials Transactions B, vol. 45, pp. 1484-1489, 2014.
[14] D. Baffari & et al., "Al-SiC metal matrix composite production through friction stir extrusion of aluminum chips," Procedia Engineering, vol. 207, pp. 419-424, 2017.
[15] R. Pandiyarajan & S. Marimuthu, "Parametric optimization and tensile behaviour analysis of AA6061-ZrO2-C FSW samples using Box-Behnken method", Materials Today: Proceedings, vol. 37, pp. 2644-2647, 2021.
[16] K. K. Jangra & et al., "An experimental investigation and optimization of friction stir welding process for AA6082 T6 (cryogenic treated and untreated) using an integrated approach of Taguchi, grey relational analysis and entropy method", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 230, no. 2, pp. 454-469, 2016.
[17] S. Verma & et al, "Multi-objective optimum design for FS welded 7039 aluminium alloy considering weld quality issues", Materials Today Communications, vol. 26, pp. 102010, 2021.
[18] M. Koilraj & et al., "Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–Optimization of process parameters using Taguchi technique", Materials & Design, vol. 42, pp. 1-7, 2012.
[19] M. Ghaffarpour & et al., "Evaluation of dissimilar welds of 5083-H12 and 6061-T6 produced by friction stir welding", Metallurgical and Materials Transactions A, vol. 44, pp. 3697-3707,2013.
[20] A. H. Sakhaie & et al., "Optimization of friction stir spot welding process parameters to achieve maximum failure load", Iranian Journal of Manufacturing Engineering, vol. 5, no. 1, pp. 13-27, 2018.
[21] G. Jamali, S. Nourouzi & R. Jamaati, "Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process", International Journal of Minerals, Metallurgy, and Materials, vol. 26, pp. 1005-1012, 2019.
[22] G. Jamali, S. Nourouzi & R. Jamaati, "Manufacturing of gradient Al/SiC composite wire by friction stir back extrusion", CIRP Journal of Manufacturing Science and Technology, vol. 35, pp. 735-743, 2021.
[23] آ. بهزادی نژاد، ع. محصل، ح. امیدوار و ن. ستوده، "تأثیر نانوذرات آلومینا، تعداد پاس اختلاط و سرعت دوران در رفتار مکانیکی آلیاژ منیزیم AM60 جوش شده به روش اصطکاکی-اغتشاشی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 16، شماره 4، صفحه 15-1، زمستان 1401.
[24] س. ا. کفائی، ح. ثابت و م. قنبری حقیقی، "اثر نوع لایه واسط بر خواص مکانیکی و ریزساختار اتصال آلومینیوم 6061 به روش جوشکاری اصطکاکی اغتشاشی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 14، شماره 4، صفحه 23-1، زمستان 1399.
[25] A. Dean & et al., "Response surface methodology'', Design and Analysis of Experiments, pp. 565-614, 2017.
[26] M. Vahdati, "Modelling and optimization of parameters affecting the tensile strength and ductility of aluminum-based composite produced by FSA via RSM", Journal of Science and Technology of Composites, vol. 7, no. 4, pp. 1207-1216, 2021.
[27] D.C. Montgomery, "Design and Analysis of Experiments", John wiley & sons, 2017.
[28] S. Benavides & et al., "Low-temperature friction-stir welding of 2024 aluminum", Scripta Materialia, vol. 41, no. 8, pp. 809-815, 1999.
[29] N. S. Sundaram & N. Murugan, "Tensile behavior of dissimilar friction stir welded joints of aluminium alloys", Materials & Design, vol. 31, no. 9, pp. 4184-4193, 2010.
[30] A. Ahmadi, M. R. Toroghinejad & A. Najafizadeh, "Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process", Materials & Design, vol. 53, pp.13-19, 2014.
[31] M. Azizieh, A. H. Kokabi & P. Abachi, "Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing", Materials & Design, vol. 32, no. 4, pp. 2034-41, 2011.
6- پی¬نوشت
[1] Friction Stir Extrusion
[2] Friction Stir Welding
[3] Friction Stir Processing
[4] Yuvaraj and Aravindan
[5] Kurt et al
[6] Li et al
[7] Behnagh et al
[8] Baffari et al
[9] Pandiyarajan and Marimuthu
[10] Jangra et al
[11] Verma et al
[12] Koilraj et al
[13] Response Surface Methodology
[14] Analysis of variance
[15] Rotational Speed
[16] Extrusion Force
[17] Reinforcement percentage weight