Investigation of Impact Toughness and Mechanical Properties of the Plain Carbon Steel Weld Metal Fabricated By SMAW with Cellulose and Rutile Coated Electrodes
Subject Areas :Navid Shojaei 1 , Hamed Sabet 2 , Banafsheh Karbakhsh Ravari 3
1 - Materials and Metallurgy Engineering(Welding).Karaj Branch. Islamic Azad University.Karaj.Iran
2 - Associate Professor, Department of Materials Engineering, Islamic Azad University, Karaj, Iran.
3 - Department of Materials Engineering.Karaj Branch.Islamic Azad University.Karaj.Iran.
Keywords: Lead Composite Polyaniline Orange Peel Adsorption.,
Abstract :
In the current research, ST37 Steel was Joined with E6010 and E6013 Electrodes by SMAW. After samples preparation, the evolution of Microstructure was carried out by OM and SEM in addition the Impact, Tensile, Bending and Microhardness tests were performed. The results shows that by decreasing time and increasing Cooling Rate, the Microstructure of Weld Metal that Welded with E6013 Electrode from Widmannstatten and Fine Ferrite has changed to Acicular and Fine Coaxial ferrite with lower average Grain size of Weld Metal using E6010 Electrode. Also, Welded sample with E60l0 Electrode shows smaller mean diameter and volume fraction of Inclusions (2.3%) compared to Weld Metal using E6013 Electrode (3.6%). Additionally, Impact Energy of specimen E6010 After the Welding process was changed from 87 to 25.5J with changing Temperature from 25 to -30℃ meanwhile, Impact Energy of sample that welded with E6013 was changed from 61 to 17.5J. Also, Impact Energy of specimen E6010 After 562 days of the Welding process was changed from 83 to 18.5J with changing Temperature from 25 to -30℃ meanwhile, Impact Energy of sample that Welded with E6013 was changed from 51 to 8J. The results of Tensile test shows that both samples that Welded with E6010 and E6013 Electrodes have same Yield Strength and Ultimate Tensile Strength in Weld Zone. The result of Bending test shows that both samples have equal Ductility and Flexibility. The results of Microhardness test shows that the average of Hardness for both samples is same and the quantity of Hardness are 148 and 150 HV for Welded sample with E6010 and E6013 Electrodes, respectively.
[1] J. Slania, B. Slazak & M. Fidali, "Application of fast Fourier transform (FFT) in the analysis of a welding current instantaneous values waveforms during welding with a covered electrode", Archives of Metallurgy and Materials, vol. 59, no. 2, pp. 569-573, 2014.
[2] O. S. Odebiyi, S. M. Adedayo, L. A. Tunji & M. O. Onuorah, "A review of weldability of carbon steel in arcbased welding processes", Cogent Engineering, vol. 6, no. 1, pp. 1-32, 2019.
[3] ا. ح. کوکبی و م. غزنوی، "تکنولوژی جوشکاری"، انتشارات علمی دانشگاه صنعت شریف، چاپ پنجم، 1396.
[4] D. Dwivedi, K. Lepkova& T. Becker, "Carbon steel corrosion: a review of key surface properties and characterization methods", Royal Society Chemistrt (RSC Advances)/CrossMark, vol. 7, no. 8, pp. 4580-4610, 2017.
[5] D. Sumardiyanto & S. E. Susilowati, "Effect of Welding Parameters on Mechanical Properties of Low Carbon Steel API 5L Shielded Metal Arc Welds", American Journal of Materials Science, vol. 9, no. 1, pp. 15-21, 2019.
[6] م. داریوندپور، ر. دهملائی و خ. رنجبر، "ارتباط ریزساختار با رفتار مکانیکی فلزجوش فولاد HSLA-100 تولید شده با روش GTAW"، فرآیندهای نوین در مهندسی مواد، دوره 15، شماره 3، صفحه 35-48، 1400.
[7] R. Chiong, N. Khandoker, S. Islam & E. Tchan, "Effect of SMAW parameters on microstructure and mechanical properties of AISI 1018 low carbon steel joints: An experimental approach", IOP Conference Series: Materials Science and Engineering, vol. 495, no. 1, pp. 1-9, 2019.
[8] T. Welt, M. Junaid, R. Mory & J. Kenney, "Evaluating impact toughness as a qualification testing requirement for welds", Elsevier/Constructional Steel Research, vol. 165, no. 1, pp. 1-10, 2019.
[9] م. ح. عوض کننده قراول، م. ح. سبزوار و ع. حائریان اردکانی، "تاثیر کروم بر ریزساختار و آخال¬های جوش¬های چند راهه فولادهای کم آلیاژی در جوشکاری به روش الکترود دستی"، مهندسی متالورژی و مواد، دوره 21، شماره 2، صفحه 13-28، 1389.
[10] ح. ثابت، "تکنولوژی و متالورژی جوشکاری"، شرکت کاوش جوش، نشر فنی امیر ، چاپ دوم، 1394.
[11] F. Khamouli, M. Zidani, K. Digheche, A. Saoudi & L. Atoui, "Effect of E6010 and E8018-G Fluxes Utilization on SMAW Multi-pass Welded steel", Scientific.Net, vol. 18, no. 1, pp. 55-64, 2018.
[12] S. D. Ramdani, A. Subhan, H. Febnesia & M. Hidayat, "Comparison of penetration depth based on effect of DCEP and DCEN polarity on SMAW process using E6013 with ASTM A36", AIP Conference proceedings, vol. 2671, no. 2, pp. 020008/1-020008/9, 2023.
[13] ن. خدابنده لو و ح. ثابت، "بررسی ریزساختار و خواص مکانیکی ناحیه اتصال فولاد ساده کربنی جوشکاری شده با فرآیند FCAW و مقایسه با فرآیندGMAW "، مواد نوین، دوره 8، شماره 2، صفحه 1-14، 1396.
[14] A. Ghosh, S. Das, S. Chatterjee & P. R. Rao, "Effect of cooling rate on structure and properties of an ultra-low carbon HSLA-100 grade steel", Materials Characterization, vol. 56, no. 1, pp. 59-65, 2010.
[15] G. O. Schumann & I. E. French, "Effect of microstructure and non-metallic inclusions on the impact properties of flux-cored weld metals", scripta materialia, vol. 36, no. 12, pp. 1443-1450, 1997.
[16] "راهنمای فنی محصولات تولیدی شرکت صنعتی آما"، شرکت صنعتی آما، چاپ بیست و دوم، 1392.
[17] A. Kesuma, Sepfitrah Rinaldi & A. Khair, "Effect of arc welding amperage on the toughness of low alloy steel", Journal of Ocean Mechanical and Aerospace, vol. 31, no. 1, pp. 21-24, 2016.
[18] S. I. Talabi, O. B. Owolabi, J. A. Adebisi & T. Yahaya, "Effect of welding variables on mechanical properties of low carbon steel welded joint, Advances in Production Engineering & Management", vol. 9, no. 4, pp. 181-186, 2014.
[19] M. Shi, P. Zhang, C. Wang & F. Zhu, "Effect of high heat input on toughness and microstructure of coarse grain heat affected zone in Zr bearing low carbon", ISIJ International, vol. 54, no. 4, pp. 932-937, 2014.
[20] M. A. Bodude & I. Momohjimoh, "Studies on Effects of Welding Parameters on the Mechanical Properties of Welded Low-Carbon Steel", Journal of Minerals and Materials Characterization and Engineering, vol. 3, no. 3, pp. 142-153, 2015.
[21] Y. R. A. Pradana, A. Aminnudin, H. Suryanto & D. Z. Lubis, "Hardness Distribution and Impact Toughness of Carburized Steel Welded by SMAW", International Conference on Mechanical Engineering Research and Application, vol. 494, no. 1, pp. 1-7, 2019.
[22] AWS A5.1/A5.1M:2012, "Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding", An American National Standard, 2012.
[23] ASME SECTION V, "Boiler and Pressure Vessel Code / Nondestructive Examination", AN INTERNATIONAL CODE, 2019.
[24] ASTM Standard E94/E94M-17, "Standard Guide for Radiographic Examination Using Industrial Radiographic Film", ASTM INTERNATIONAL, 2019.
[25] ش. شفیع نیا، ش. میردامادی، ح. ثابت و س. ر. امیر آبادی زاده، "تعیین مقدار بهینه عنصر بور موثر بر انرژی ضربه در دماهای پایین فلزجوش فولاد ساده کربنی جوشکاری شده به روشSAW "، مواد نوین، دوره 6، شماره 1، صفحه 19-36، 1394.
[26] ASTM Standard E3-11, "Standard Guide for Preparation of Metallographic Specimens", ASTM INTERNATIONAL, 2017.
[27] ASTM Standard E883-11, "Standard Guide for Reflected-Light Photomicrography", ASTM INTERNATIONAL, 2012.
[28] AWS B4.0:2016, "Standard Methods for Mechanical Testing of Welds", An American National Standard, 2016.
[29] ASTM Standard E384-05a, "Standard Test Method for Microindentation Hardness of Materials", ASTM INTERNATIONAL, 2005.
[30] J. S. Lee, S. H. Jeong, D. Y. Lim, J. O. Yun & M. H. Kim, "Effects of welding heat and travel speed on the impact property and microstructure of FC welds", Metals and Materials International, vol. 16, no. 5, pp. 827-832, 2010.
[31] G. Krauss, Steels: Processing, "Structure and Performance", 1th Eddition, pp. 113-129, ASM International, 2015.
[32] ASTM Standard E45-05, "Standard Test Methods for Determining the Inclusion Content of Steel", ASTM INTERNATIONAL, 2005.
[33] K. T. Park, S. W. Hwang, J. H. Ji & C. H. Lee, "Inclusions Nucleating Intragranular Polygonal Ferrite and Acicular Ferrite in Low Alloyed Carbon Manganese Steel Welds", Metals and Materials International, vol. 17, no. 2, pp. 349-356, 2011.
[34] S. Kumar & S. K. Nath, "Effect of heat input on impact toughness in transition temperature region of weld CGHAZ of a HY 85 steel", springer, vol. 236, no. 5, pp. 216-224, 2016.
[35] ع. طالبی هنزائی، پ. مرعشی، ا. رنجبر نوده و ا. حمداله زاده، "تاثیر مقدار هیدروژن و شرایط جوشکاری بر ترک هیدروژنی در جوش فولاد API X70"، نشریه علوم و فناوری جوشکاری ایران، دوره 4، شماره 1، صفحه 29-41، 1397.
[36] ر. پیری، ب. قاسمی و م. یوسف پور، "تاثیر کسرحجمی بینیت حاصل از عملیات حرارتی بین بحرانی بر خواص مکانیکی و رفتار شکست فولاد دوفازی فریتی-بینیتی"، مهندسی متالورژی، دوره 20، شماره 1، صفحه 54-46، 1396.
[37] W. T. Becker & S. Lampman, "Fracture appearance and mechanisms of deformation and fracture", ASM Handbook, vol. 11, 2002.
[38] ASTM Standard E23-16b, "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials", ASTM INTERNATIONAL, 2018.
[39] ASTM Standard E290-09, "Standard Test Methods for Bend Testing of Material for Ductility", ASTM INTERNATIONAL, 2009.
[40] AWS D1.1/D1.1M:2020, "Structural Welding Code-Steel", An American National Standard, 2020.