Synthesis of Nickel Cobalt and Reduced Graphene Oxide Composite for Use as an Electrode Material with High Supercapacitor Performance
Subject Areas :
1 - افسریه قصرفیروزه ۲ بلوک۴ طبقه ۴ واحد۳
Keywords: Electrochemical capacitors, uniform plates, sonochemistry, Reduced graphene oxide,
Abstract :
The use of environmentally friendly energy storage systems is known as the best solution to reduce the bad effect of fossil fuels. Supercapacitors have received more attention than other energy storage devices (batteries and fuel cells) due to their high power density, high cycling stability and optimal energy density. The use of inexpensive and available electrode material is the key to the development of supercapacitors in industrial and commercial scales. Using these two together can achieve a morphology with many electrochemically active sites, the combination of oxide supercapacitors with carbon nanocompounds will have a great effect on its electrochemical properties In addition to being cheap and readily available, nickel and cobalt oxides with reduced graphene oxide have a high theoretical specific capacity. In this study electrode material nickel oxide graphene, cobalt oxide (NiCo2O4/NiO/RGO) electrode was synthesized using Sonochemistry method. After synthesis, nanoparticles were mixed with 1:5 ratio of nanoparticles and graphene oxide. The size range of nanoparticles in this nanocomposite is from 30 to 60 nanometers Then, the characterization tests of XRD, FT-IR and SEM were used to determine the crystallographic and morphological properties. Characterization analyses showed that the electrode material of (NiCo2O4/NiO/RGO) was obtained with a hollow microbial morphology. Electrochemical tests of CV, GCD and EIS showed that the (NiCo2O4/NiO/RGO) electrode had excellent supercapacitive performance with a specific capacitance of 400 F/g at a current density of 1 A/g. This performance is related to the synergistic effect of nickel cobalt oxides with RGO, which provide the porosity and active sites necessary to carry out the charge transfer reaction.
[1] N. Bose, V.Sundararajan, T. Prasankumar & S. P. Jose, "α–MnO2 coated anion intercalated carbon nanowires: A high rate capability electrode material for supercapacitors", Materials Letters, vol. 278, p. 128457, 2020.
[2] J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang & Zh. Fan, "Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors", Electrochimica Acta, vol. 55, no. 23, pp. 6973-6978, 2010.
[3] W. Tong, Y. Wang, Y. Bian, A. Wang, N. Han & Y. Chen, "Sensitive cross-linked SnO2: NiO networks for MEMS compatible ethanol gas sensors", Nanoscale Research Letters, vol. 15, no. 1, pp. 1-12, 2020.
[4] R. Kumar, P. Rai & A. Sharma, "3D urchin-shaped Ni3 (VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications," Journal of Materials Chemistry A, vol. 4, no. 25, pp. 9822-9831, 2016.
[5] M. Isacfranklin, R. Yuvakkumar, G. Ravi, M. Pannipara, A. G. Al-Sehemi & D. Velauthapillai, CuCoO2 electrodes for supercapacitor applications. Materials Letters, vol. 296, p. 129930, 2021.
[6] M. Jayachandran, S. K. Babu, T. Maiyalagan & N. Rajadurai, "Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications", Materials letters, vol. 301, p. 130335, 2021.
[7] D. P. Dubal & P. Gomez-Romero, "Metal oxides in supercapacitors", 2017, Elsevier.
[8] A. Muzaffar, M. Basheer Ahamed, K. Deshmukh & J. Thirumalai, "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications", Renewable and Sustainable Energy Reviews, vol. 101. pp. 123-145, 2019.
[9] Y. Y. Huang & L. Y. Lin, "Synthesis of ternary metal oxides for battery-supercapacitor hybrid devices: influences of metal species on redox reaction and electrical conductivity", ACS Applied Energy Materials, vol. 1, no. 6, pp. 2979-2990, 2018.
[10] M. AmirZade, "Synthesis of Mn2V2O7 hollow microsphere as a high performance electrode material for supercapacitors," Iranian Journal of Ceramic Science & Engineering, vol. 11, no. 4, pp. 35-45, 2023.
[11] G. K. Veerasubramani, A. Chandrasekhar, M. S. P. Sudhakaran & Y. S. Muk, "Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core–shell nanostructures assembled with honeycomb-like porous carbon", Journal of Materials Chemistry A, vol. 5, no. 22, pp. 11100-11113, 2017.
[12] G. Nagaraju, S. Ch. Sekhar, G. S. R. Raju, L. K. Bharat & J. S. Yu, "Designed construction of yolk–shell structured trimanganese tetraoxide nanospheres via polar solvent-assisted etching and biomass-derived activated porous carbon materials for high-performance asymmetric supercapacitors", Journal of Materials Chemistry A, vol. 5, no. 30, pp. 15808-15821, 2017.
[13] Wang, F., Sh. Xiao, Y. Hou, Ch. Hu, L. Liua & Y. Wu, "Electrode materials for aqueous asymmetric supercapacitors", Rsc Advances, vol. 3, no. 32, pp. 13059-13084, 2013.
[14] X. Zhao, Q. Liu, Q. Li, L. Chen, L. Mao, H. Wang & Sh. Chen, "Two-dimensional electrocatalysts for alcohol oxidation: A critical review", Chemical Engineering Journal, vol. 400, p. 125744, 2020.
[15] A. González, E. Goikolea, J. Andoni Barrena, R. Mysyk, "Review on supercapacitors: Technologies and materials", Renewable and sustainable energy reviews, vol. 58, pp. 1189-1206, 2016.
[16] S. Sharifi, Sh. Behzadi, S. Laurent, M. L. Forrest, P. Stroevee & M. Mahmoudi, "Toxicity of nanomaterials", Chemical Society Reviews, vol. 41, no. 6, pp. 2323-2343, 2012.
[17] V. S. Kumbhar, A. D. Jagadale, N. M. Shinde & C.D. Lokhande, "Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application", Applied Surface Science, vol. 259, pp. 39-43, 2012.
[18] G. Rothenberger, J. Moser, M. Graetzel, N. Serpone & D. K. Sharma, "Charge carrier trapping and recombination dynamics in small semiconductor particles", Journal of the American Chemical Society, vol. 107, no. 26, pp. 8054-8059, 1985.
[19] س. ع. حسینی مرادی، م. امیرزاده و ن. قبادی، "ساخت الکترودهای ابرخازنیِ نیکل منگنز اکسید (NiMnO3) نانوصفحهای با استفاده از روش سنتز هیدروترمال"، فرآیندهای نوین در مهندسی مواد، دوره 17، شماره 2، پیاپی 65، صفحه 25-33، 1402.
[20] Y. Sun, X. Du, J. Zhang, N. Huang, L. Yang & X. Sun"Microwave-assisted preparation and improvement mechanism of carbon nanotube@ NiMn2O4 core-shell nanocomposite for high performance asymmetric supercapacitors", Journal of Power Sources, vol. 473, p. 228609, 2020.
[21] M. Jing, Ch. Wang, H. Hou, Zh. Wu, Y. Zhu, Y. Yang, X. Jia, Y. Zhang & X. Ji, "Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage", Journal of Power Sources, vol. 298, pp. 241-248, 2015.
[22] A. Laforgue, P. Simon, J. F. Fauvarque, J. F. Sarrau & P. Lailler, "Hybrid supercapacitors based on activated carbons and conducting polymers", Journal of the Electrochemical Society, vol. 148, no. 10, p. A1130, 2001.
[23] X. Zhang, B. Shao, A. Guo & Z. Gao, "Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors", Journal of Alloys and Compounds, vol. 862, p. 158546, 2021.
[24] W. Ren, D. Guo, M. Zhuo, B. Guan, D. Zhangc & Q. Li, "NiMoO4@Co(OH)2 core/shell structure nanowire arrays supported on Ni foam for high-performance supercapacitors", RSC Advances, vol. 5, no. 28, pp. 21881-21887, 2015.