Comparison of Oxidation and Thermal Shock Properties of YSZ/Nanoal2o3 Composite Thermal Barrier Coatings Made By Plasma Spraying of Un-Pyrolyzed Precursor and Aglomerated Nanocrystalline Alumina Powder
Subject Areas :Saeid Taghi-ramezani 1 , Zia Valefi 2 , Naser Ehsani 3 , masud mirjani 4
1 - M.Sc. in Corrosion engineering, Malek-e-Ashtar University of Technology, Tehran, Iran.
2 - Associate Prof. Malek-e-Ashtar University of Technology, Tehran, Iran.
3 - Professor, Malek-e-Ashtar University of Technology, Tehran, Iran.
4 - M.Sc. in Corrosion engineering, Malek-e-Ashtar University of Technology, Tehran, Iran.
Keywords: thermal barrier coating, Precursor Pyrolysing Alumina Diffusion Barrier High Temperature Oxidation Thermal Shock,
Abstract :
In this research, firstly amorphous Alumina powder was produced by co-precipitation method. Then YSZ/Al2O3 coatings were applied by plasma spraying process in two types of pyrolyzed and crystalline nano-alumina. High temperature oxidation and thermal shock resistance test were done at 1100˚C. Microstructure and phase analysis of coatings were studied by optical and electron microscopes and XRD method. Comparison of the microstructure of coatings showed that the use of crystalline nano-alumina powder in the YSZ/Alumina layer composite upgrades the thermal properties. High temperature oxidation and thermal shock resistance of plasma sprayed YSZ/Al2O3 with un-pyrolysed nano-alumina and coatings with same composition with crystalline nano-alumina to created by plasma spraying were studied. Findings showed that the use of un-pyrolyzed nano-alumina powder in YSZ/Al2O3 layer composite resulted in increased porosity and shrinkage cavities in the coating, which increased the diffusion of O2 that causes the TGO growth rate. Also, high density and proper contact between the splats made of crystalline nano-alumina powder results in higher resistance of thermal cycles.
[1] م. م. خرمی راد، م. ر. رحیمی پور، س. م.م. هادوی و ک. شیروانی جوزانی، "سنتز پودر هگزا آلومینات لانتانیم (LaMgAl11O19) بهمنظور پوشش دهی به روش پلاسما اسپری بر روی سوپر آلیاژ پایه نیکل بهعنوان پوشش سد حرارتی،" فصلنامه علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 12، صفحه 183-173، 2018.
[2] S. Sharafat, A. Kobayashi, Y. Chen & N. Ghoniem, "Plasma spraying of micro-composite thermal barrier coatings," Vacuum, vol. 65, no. 3-4, pp. 415-425, 2002.
[3] A. Keyvani, "Microstructural stability oxidation and hot corrosion resistance of nanostructured Al2O3/YSZ composite compared to conventional YSZ TBC coatings," Journal of Alloys and Compounds, vol. 623, pp. 229-237, 2015.
[4] P. Wang, S. Deng, Y. He, C. Liu & J. Zhang, "Oxidation and hot corrosion behavior of Al2O3/YSZ coatings prepared by cathode plasma electrolytic deposition," Corrosion Science, vol. 109, pp. 13-21, 2016.
[5] R. Bermejo et al., "Threshold strength evaluation on an Al 2 O 3–ZrO 2 multilayered system," Journal of the European Ceramic Society, vol. 27, no. 2, pp. 1443-1448, 2007.
[6] H. Echsler, V. Shemet, M. Schütze, L. Singheiser & W. Quadakkers, "Cracking in and around the thermally grown oxide in thermal barrier coatings: A comparison of isothermal and cyclic oxidation," Journal of Materials science, vol. 41, no. 4, pp. 1047-1058, 2006.
[7] P. Fauchais, "Thermal Spray Fundamentals/ Fauchais, P., Heberlein, J., Boulos, M," NY: Springer, p. 1600, 2014.
[8] J. Gao, Y. He & D. Wang, "Preparation of YSZ/Al 2 O 3 micro-laminated coatings and their influence on the oxidation and spallation resistance of MCrAlY alloys," Journal of the European Ceramic Society, vol. 31, no. 1, pp. 79-84, 2011.
[9] E. Bouyer, D. Branston, G. Lins, M. Müller, J. Verlegen & M. von Bradke, "Progress in Plasma Processing of Materials ed P Fauchais," ed: New York, USA: Begell House, 1997.
[10] L. Xie et al., "Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings," Surface and Coatings Technology, vol. 201, no. 3, pp. 1058-1064, 2006.
[11] M. Gell et al., "Thermal barrier coatings made by the solution precursor plasma spray process," Journal of Thermal Spray Technology, vol. 17, no. 1, pp. 124-135, 2008.
[12] J. Ziegelheim et al., "Abradable Coatings for Small Turboprop Engines: A Case Study of Nickel-Graphite Coating," Journal of Thermal Spray Technology, vol. 28, no. 4, pp. 794-802, 2019.
[13] L. Jin, L. Ni, Q. Yu, A. Rauf & C. Zhou, "Thermal cyclic life and failure mechanism of nanostructured 13 wt% Al2O3 doped YSZ coating prepared by atmospheric plasma spraying," Ceramics International, vol. 38, no. 4, pp. 2983-2989, 2012.
[14] A. Fox & T. Clyne, "Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings," Surface and Coatings Technology, vol. 184, no. 2-3, pp. 311-321, 2004.
[15] س. ع. فدکی صادقی، ض. والفی و ک. زنگنه مدار "ارزیابی میکرو ساختاری پوششهای YSZ پاشش پلاسمایی," فصلنامه علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 9، صفحه 105-95، 2015.
[16] M. Daroonparvar, M. S. Hussain & M. A. M. Yajid, "The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air," Applied Surface Science, vol. 261, pp. 287-297, 2012.
[17] F. Tang & J. M. Schoenung, "Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top-coat/bond-coat interfaces," Scripta materialia, vol. 52, no. 9, pp. 905-909, 2005.
[18] M. Koolloos & J. Houben, "Residual stresses in as-sprayed and heat treated TBCs. Measurements and FEM calculations," in Materials science forum, 2000, vol. 347, pp. 465-470: Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland.
[19] G. Di Girolamo, F. Marra, C. Blasi, E. Serra & T. Valente, "Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings," Ceramics International, vol. 37, no. 7, pp. 2711-2717, 2011.
[20] X. Ma et al., "Thick Thermal Barrier Coatings with Controlled Microstructures Using Solution Precursor Plasma Spray Process," in ITSC 2004: International Thermal Spray Conference 2004: Advances in Technology and Application, 2004, pp. 1103-1109.
[21] S. Bose, "High temperature coatings," 2011: Butterworth-Heinemann.
_||_