Influence of pH of Electroplating on Microstructure and Mechanical Properties of Ni-P-Tio2 Composite Coating Fabricated on AISI 430 Steel
Subject Areas :Mina Afzali Grouh 1 , Morteza Zandrahimi 2 , Hadi Ebrahimifar 3
1 - Department of Metallurgy and Materials Science, Faculty of Engineering, Shahid Bahonar University of Kerman, Jomhoori Eslami Blvd., 76169-133, Kerman, Iran.
2 - Department of Metallurgy and Materials Science, Faculty of Engineering, Shahid Bahonar University of Kerman, Jomhoori Eslami Blvd., 76169-133, Kerman, Iran.
3 - Department of Materials Engineering, Faculty of Mechanical and Materials Engineering, Graduate University of Advanced Technology, 7631133131, Kerman, Iran..
Keywords: pH, Microhardness, Electroplating, Ni-P-TiO2 Coating, Abrasion resistance,
Abstract :
One of the best ways to improve the abrasion resistance and toughness of stainless steels is to apply surface coatings. Among these coatings are nickel base alloy and composite coatings. In this research, nickel-phosphorus-titanium oxide coatings were developed using electrical plating technique and the effect of pH (3, 3.5 and 4) on microstructure and their wear and tear behavior were studied. In this research, nickel phosphorus-titanium oxide coating was deposited onto the AISI 430 steel using electrical plating technique and the effect of TiO2 particles concentration on microstructure and wear behavior was studied. X-ray analysis (XRD) was used to determine the available phases and calculate grain size. Characterization of the coating was performed using SEM (Scanning Electron Microscopy). The michardness was measured by Vickers microhardness device. To test the abrasion resistance of the phosphorus-titanium oxide coated and uncoated samples, a pin on the disk test was used. The results of X-ray analysis showed that the increase of pH causes the increase of grain size. Also the results of microhardness and pin on disk tests showed the increase of pH causes decrease of microhardness and abrasion resistance. The highest hardness (618.18 Vickers) was related to the coating created at pH =3 and TiO2 =40 gr / L. The highest wear resistance and lowest weight loss (0.15 mg) were also observed in the same coating.
[1] C. J. Novak, "Structure and constitution of wrought austenitic stainless steels", Handbook of stainless steels, pp, 4-1, 1977.
]2[ م. زند رحیمی و ه. ابراهیمی فر "بررسی رسانش الکتریکی صفحات اتصالدهنده مورد استفاده در پیلهای سوختی اکسید جامد در حضور اسپینلهای منگنز"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، مقاله 4، دوره 6، شماره 1، ص 42-35، 1391.
[3] L. Umoru, A. Afonja & B. Ademodi, "Corrosion study of AISI 304, AISI 321 and AISI 430 stainless steels in a tar sand digester", Journal of Minerals and Materials Characterization and Engineering, vol. 7, pp, 291, 2008.
[4] G. Luo, H. Li, Y. Li & J. Mo, "Microstructures and Properties of a Low-Carbon-Chromium Ferritic Stainless Steel Treated by a Quenching and Partitioning Process", Materials, vol. 12, pp, 1704, 2019.
]5 [پ. لسانی، ع. بابائی و ا. عطائی "بررسی رفتار اسپینل منگنز کبالتایت به عنوان پوشش صفحات اتصالدهنده پیل سوختی اکسید جامد"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، مقاله 9، دوره 11، شماره 4، ص 107-97، 1396.
[6] K. H. Hou & Y. C. Chen, "Preparation and wear resistance of pulse electrodeposited Ni–W/Al2O3 composite coatings", Applied Surface Science, vol. 257, pp, 6340-6346, 2011.
[7] V. Tseluikin & Y. V. Gold, "Electrodeposition of nickel-based composite coatings from a sulfamate electrolyte", Russian Journal of Applied Chemistry, vol. 90, pp, 492-495, 2017.
[8] S. Aruna, V. W. Grips & K. Rajam, "Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties", Journal of Alloys and compounds, vol. 468, pp, 546-552, 2009.
[9] Y. E. Sknar, O. Savchuk & I. Sknar, "Characteristics of electrodeposition of Ni and Ni-P alloys from methanesulfonate electrolytes", Applied Surface Science, vol. 423, pp, 340-348, 2017.
[10] S. Geng, S. Qi, Q. Zhao, S. Zhu & F. Wang, "Electroplated Ni–Fe2O3 composite coating for solid oxide fuel cell interconnect application", International Journal of Hydrogen Energy, vol. 37, pp, 10850-10856, 2012.
[11] A. Rashidi & A. Amadeh, "The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings", Surface and Coatings Technology, vol. 204, pp. 353-358, 2009.
[12] C. Guo, Y. Zuo, X. Zhao, J. Zhao & J. Xiong, "Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings", Surface and Coatings Technology, vol. 202, pp, 3385-3390, 2008.
[13] B. Wielage, T. Lampke, M. Zacher & D. Dietrich, "Electroplated nickel composites with micron-to nano-sized particles, Key Engineering Materials", Trans Tech Publ, pp. 283-309, 2008.
[14] S. C. Wang & W. C. J. Wei, "Characterization of electroplated Ni/SiC and Ni/Al 2 O 3 composite coatings bearing nanoparticles", Journal of materials research, vol. 18, pp, 1566-1574, 2003.
[15] M. C. Chou, M. D. Ger, S. T. Ke, Y. R. Huang & S. T. Wu, "The Ni–P–SiC composite produced by electro-codeposition", Materials Chemistry and Physics, vol. 92, pp, 146-151, 2005.
[16] L. Chang, C. H. Chen & H. Fang, "Electrodeposition of Ni–P alloys from a sulfamate electrolyte relationship between bath pH and structural characteristics", Journal of The Electrochemical Society, vol. 155, pp, D57-D61, 2008.
[17] K. H. Hou, M. C. Jeng & M. D. Ger, "A study on the wear resistance characteristics of pulse electroforming Ni–P alloy coatings as plated", Wear , vol. 262, pp, 833-844, 2007.
[18] K. M. Hyie, N. A. Resali, W. N. R. Abdullah, W. Chong, "Synthesis and characterization of nanocrystalline pure cobalt coating: effect of pH, Procedia Engineering, vol. 41, pp,1627-1633, 2012.
[19] B. Ranjith & G. P. Kalaignan, Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath, Applied Surface Science, vol. 257, pp, 42-47, 2010.
[20] J. Winiarski, A. Leśniewicz, P. Pohl & B. Szczygieł, "The effect of pH of plating bath on electrodeposition and properties of protective ternary Zn–Fe–Mo alloy coatings", Surface and Coatings Technology, vol. 299, pp, 81-89, 2016.
[21] A. Bund & D. Thiemig, "Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel", Surface and Coatings Technology, vol. 201, pp, 7092-7099, 2007.
[22] C. Lin, C. Lee, C. Chang & C. Chang, "Annealing behavior of electrodeposited Ni-TiO2 composite coatings", Surface and Coatings Technology, vol. 200, pp, 3690-3697, 2006.
[23] A. Gupta, S. Barkam, D. Lahiri, R. Balasubramaniam & K. Balani, "Effect of alumina dispersion on microstructural and nanomechanical properties of pulse electrodeposited nickel–alumina composite coatings", Journal of Materials Science & Technology, vol. 30, pp, 808-813, 2014.
[24] H. Gül, F. Kılıç, S. Aslan, A. Alp & H. Akbulut, "Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings", Wear, vol. 267, 976-990, 2009.
[25] K. Krishnaveni, T. S. Narayanan & S. Seshadri, "Electrodeposited Ni–B coatings: Formation and evaluation of hardness and wear resistance", Materials chemistry and physics, vol. 99, pp, 300-308, 2006.
[26] P. Gadhari & P. Sahoo, "Optimization of coating process parameters to improve microhardness of Ni-P-TiO2 composite coatings", Materials Today: Proceedings, vol. 2, pp, 2367-2374, 2015.
[27] D. Jeong, U. Erb, K. Aust & G. Palumbo, "The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings", Scripta Materialia, vol. 48, pp, 1067-1072, 2003.
[28] S. Julka, M. I. Ansari, D. G. Thakur, "Effect of pH on mechanical, physical and tribological properties of electroless Ni-P-Al 2 O 3 composite deposits for marine applications", Journal of Marine Science and Application, vol. 15, pp, 484-492, 2016.
[29] A. Gruszka & A. Budniok, "Production and structure of electrocoatings Ni-P-TiO2-Al", Advanced Performance Materials, vol. 6, pp, 141-147, 1999.
_||_[1] C. J. Novak, "Structure and constitution of wrought austenitic stainless steels", Handbook of stainless steels, pp, 4-1, 1977.
]2[ م. زند رحیمی و ه. ابراهیمی فر "بررسی رسانش الکتریکی صفحات اتصالدهنده مورد استفاده در پیلهای سوختی اکسید جامد در حضور اسپینلهای منگنز"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، مقاله 4، دوره 6، شماره 1، ص 42-35، 1391.
[3] L. Umoru, A. Afonja & B. Ademodi, "Corrosion study of AISI 304, AISI 321 and AISI 430 stainless steels in a tar sand digester", Journal of Minerals and Materials Characterization and Engineering, vol. 7, pp, 291, 2008.
[4] G. Luo, H. Li, Y. Li & J. Mo, "Microstructures and Properties of a Low-Carbon-Chromium Ferritic Stainless Steel Treated by a Quenching and Partitioning Process", Materials, vol. 12, pp, 1704, 2019.
]5 [پ. لسانی، ع. بابائی و ا. عطائی "بررسی رفتار اسپینل منگنز کبالتایت به عنوان پوشش صفحات اتصالدهنده پیل سوختی اکسید جامد"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، مقاله 9، دوره 11، شماره 4، ص 107-97، 1396.
[6] K. H. Hou & Y. C. Chen, "Preparation and wear resistance of pulse electrodeposited Ni–W/Al2O3 composite coatings", Applied Surface Science, vol. 257, pp, 6340-6346, 2011.
[7] V. Tseluikin & Y. V. Gold, "Electrodeposition of nickel-based composite coatings from a sulfamate electrolyte", Russian Journal of Applied Chemistry, vol. 90, pp, 492-495, 2017.
[8] S. Aruna, V. W. Grips & K. Rajam, "Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties", Journal of Alloys and compounds, vol. 468, pp, 546-552, 2009.
[9] Y. E. Sknar, O. Savchuk & I. Sknar, "Characteristics of electrodeposition of Ni and Ni-P alloys from methanesulfonate electrolytes", Applied Surface Science, vol. 423, pp, 340-348, 2017.
[10] S. Geng, S. Qi, Q. Zhao, S. Zhu & F. Wang, "Electroplated Ni–Fe2O3 composite coating for solid oxide fuel cell interconnect application", International Journal of Hydrogen Energy, vol. 37, pp, 10850-10856, 2012.
[11] A. Rashidi & A. Amadeh, "The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings", Surface and Coatings Technology, vol. 204, pp. 353-358, 2009.
[12] C. Guo, Y. Zuo, X. Zhao, J. Zhao & J. Xiong, "Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings", Surface and Coatings Technology, vol. 202, pp, 3385-3390, 2008.
[13] B. Wielage, T. Lampke, M. Zacher & D. Dietrich, "Electroplated nickel composites with micron-to nano-sized particles, Key Engineering Materials", Trans Tech Publ, pp. 283-309, 2008.
[14] S. C. Wang & W. C. J. Wei, "Characterization of electroplated Ni/SiC and Ni/Al 2 O 3 composite coatings bearing nanoparticles", Journal of materials research, vol. 18, pp, 1566-1574, 2003.
[15] M. C. Chou, M. D. Ger, S. T. Ke, Y. R. Huang & S. T. Wu, "The Ni–P–SiC composite produced by electro-codeposition", Materials Chemistry and Physics, vol. 92, pp, 146-151, 2005.
[16] L. Chang, C. H. Chen & H. Fang, "Electrodeposition of Ni–P alloys from a sulfamate electrolyte relationship between bath pH and structural characteristics", Journal of The Electrochemical Society, vol. 155, pp, D57-D61, 2008.
[17] K. H. Hou, M. C. Jeng & M. D. Ger, "A study on the wear resistance characteristics of pulse electroforming Ni–P alloy coatings as plated", Wear , vol. 262, pp, 833-844, 2007.
[18] K. M. Hyie, N. A. Resali, W. N. R. Abdullah, W. Chong, "Synthesis and characterization of nanocrystalline pure cobalt coating: effect of pH, Procedia Engineering, vol. 41, pp,1627-1633, 2012.
[19] B. Ranjith & G. P. Kalaignan, Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath, Applied Surface Science, vol. 257, pp, 42-47, 2010.
[20] J. Winiarski, A. Leśniewicz, P. Pohl & B. Szczygieł, "The effect of pH of plating bath on electrodeposition and properties of protective ternary Zn–Fe–Mo alloy coatings", Surface and Coatings Technology, vol. 299, pp, 81-89, 2016.
[21] A. Bund & D. Thiemig, "Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel", Surface and Coatings Technology, vol. 201, pp, 7092-7099, 2007.
[22] C. Lin, C. Lee, C. Chang & C. Chang, "Annealing behavior of electrodeposited Ni-TiO2 composite coatings", Surface and Coatings Technology, vol. 200, pp, 3690-3697, 2006.
[23] A. Gupta, S. Barkam, D. Lahiri, R. Balasubramaniam & K. Balani, "Effect of alumina dispersion on microstructural and nanomechanical properties of pulse electrodeposited nickel–alumina composite coatings", Journal of Materials Science & Technology, vol. 30, pp, 808-813, 2014.
[24] H. Gül, F. Kılıç, S. Aslan, A. Alp & H. Akbulut, "Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings", Wear, vol. 267, 976-990, 2009.
[25] K. Krishnaveni, T. S. Narayanan & S. Seshadri, "Electrodeposited Ni–B coatings: Formation and evaluation of hardness and wear resistance", Materials chemistry and physics, vol. 99, pp, 300-308, 2006.
[26] P. Gadhari & P. Sahoo, "Optimization of coating process parameters to improve microhardness of Ni-P-TiO2 composite coatings", Materials Today: Proceedings, vol. 2, pp, 2367-2374, 2015.
[27] D. Jeong, U. Erb, K. Aust & G. Palumbo, "The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings", Scripta Materialia, vol. 48, pp, 1067-1072, 2003.
[28] S. Julka, M. I. Ansari, D. G. Thakur, "Effect of pH on mechanical, physical and tribological properties of electroless Ni-P-Al 2 O 3 composite deposits for marine applications", Journal of Marine Science and Application, vol. 15, pp, 484-492, 2016.
[29] A. Gruszka & A. Budniok, "Production and structure of electrocoatings Ni-P-TiO2-Al", Advanced Performance Materials, vol. 6, pp, 141-147, 1999.