Comparison of in vitro physico-chemical and antibacterial properties of 68S and 58S bioactive glasses synthesized by sol-gel method
Subject Areas :Amirhossein Moghanian 1 , mohammad amin zohour fazeli 2
1 - Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
2 - material and metallrgy, technical and engineering,imam khomeini international university, Qazvin, Iran
Keywords: hydroxyapatite, Sol-gel method, bioactive glass, Antibacterial activity,
Abstract :
The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) with the fixed P2O5 content were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days. The evolution of the SBF composition was monitored by inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses. Additionally, Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize formed hydroxyapatite on BG's surface. On the other hand, Live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3cells in presence of 58s and 68s BGs. Eventually, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in comparison to BG-68S in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.
[1] Hench, “The story of Bioglass®ˮ, Journal of Materials Science: Materials in Medicine, Vol. 17, No. 11, pp. 967-978, 2006.
[2] Hench, “Bioceramics: from concept to clinicˮ, Journal of the american ceramic society, Vol. 74, No. 7, pp. 1487-1510, 1991.
[3] P. Saravanapavan, “Bioactivity of gel–glass powders in the CaO‐SiO2 system: A comparison with ternary (CaO‐P2P5‐SiO2) and quaternary glasses (SiO2‐CaO‐P2O5‐Na2O)ˮ, Journal of Biomedical Materials Research, Vol. 66, No. 1, pp. 110-119, 2003.
[4] م. خورسند قاینی، "بررسی خصوصیات حرارتی کامپوزیت پلی لاکتیک اسید با ذرات شیشه زیست فعال 45S5 و هیدروکسی آپاتیت(HA) به منظور استفاده در پیچ های تداخلی قابل جذب"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، سال یازدهم، شماره4، صفحه 56-55، 1396.
[5] F. Sharifianjazi, N. Parvin & Tahriri, “Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glassesˮ, Ceramics International, Vol. 43, No. 17, pp. 15214-15220, 2017.
[6] X. Lu et al., “Mixed network former effect on structure, physical properties, and bioactivity of 45S5 bioactive glasses: an integrated experimental and molecular dynamics simulation studyˮ, he Journal of Physical Chemistry B, Vol. 122, No. 9, pp. 2564-2577, 2018.
[7] M. Mozafari, F. Moztarzadeh & Tahriri, “Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluidˮ, Journal of Non-Crystalline Solids, Vol. 356, No. 28-30, pp. 1470-1478, 2010.
[8] R. Gupta & Kumar, “Bioactive materials for biomedical applications using sol–gel technologyˮ, Biomedical Materials, Vol. 3, No. 3, p. 034005, 2008.
[9] N. Li, Q. Jie, S. Zhu & Wang, “Preparation and characterization of macroporous sol–gel bioglassˮ, Ceramics International, Vol. 31, No. 5, pp. 61-646, 2005.
[10] P. Sepulveda, “In vitro dissolution of melt‐derived 45S5 and sol‐gel derived 58S bioactive glassesˮ, Journal of Biomedical Materials Research, Vol. 61, No. 2, pp. 301-311, 2002.
[11] A. Perardi, “Carbonate formation on sol-gel bioactive glass 58S and on Bioglass® 45S5ˮ, In Studies in Surface Science and Catalysis, Vol. 155: Elsevier, pp. 461-469, 2005.
[12] K. Ohura et al., “Bone‐bonding ability of P2O5‐free CaO SiO2 glassesˮ, Journal of Biomedical Materials Research, Vol. 25, No. 3, pp. 357-365, 1991.
[13] J. Ye, “Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activityˮ, Biotechnology Letters, Vol. 36, No. 5, pp. 961-968, 2014.
[14] م. نصراصفهانی، "تاثیر تابش نور فرابنفش بر زیست فعالی پوششهای هیبریدی نانوساختار پلی سیلوکسان-تیتانیوم دی اکسید- شیشه زیستی به روش سل- ژل"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره 4، صفحه 137-129، 1394.
[15] J. Liu, “Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effectsˮ, Dental Materials, Vol. 32, No. 3, pp. 412-422, 2016.
[16] J. Moran, “Methicillin-resistant Staphylococcus aureus in community-acquired skin infectionsˮ, Emerging Enfectious Diseases, Vol. 11, No. 6, pp. 928, 2005.
[17] F. Sharifianjazi, N. Parvin & Tahriri, “Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glassesˮ, Journal of Non-Crystalline Solids, Vol. 476, pp. 108-113, 2017.
[18] M. Taghian Dehaghani, M. Ahmadian & Fathi, “Synthesis, characterization, and bioactivity evaluation of amorphous and crystallized 58S bioglass nanopowdersˮ, International Journal of Applied Ceramic Technology, Vol. 12, No. 4, pp. 867-874, 2015.
[19] م. نصراصفهانی، "مقایسه خواص فیزیکی- شیمیایی سه نوع پوشش نانوساختار شیشه زیست فعال و زیست فعالی آنها"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، سال سوم، شماره 3،صفحه 35-29، 1388.
[20] T. Kokubo & Takadama, “How useful is SBF in predicting in vivo bone bioactivity?ˮ, Biomaterials, Vol. 27, No. 15, pp. 2907-2915, 2006.
[21] L. Francis, “Multi-functional P (3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineeringˮ, Acta biomaterialia, Vol. 6, No. 7, pp. 2773-2786, 2010.
[22] Brauer & R. Brückner, “Sodium-free mixed alkali bioactive glassesˮ, Biomedical Glasses, Vol. 2, No.1, 2016.
[23] H. M. Elgendy, “Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite materialˮ, Biomaterials, Vol. 14, No. 4, pp. 263-269, 1993.
[24] Yellowley, “Functional gap junctions between osteocytic and osteoblastic cellsˮ, Journal of Bone and Mineral Research, Vol. 15, No. 2, pp. 209-217, 2000.
[25] S. Hu, “Study on antibacterial effect of 45S5 Bioglass®ˮ, Journal of Materials Science: Materials in Medicine, Vol. 20, No. 1, pp. 281-286, 2009.
[26] S. Hu, “Antibacterial activity of silicate bioceramicsˮ, Journal of Wuhan University of Technology-Mater. Sci. Ed, Vol. 26, No. 2, pp. 226-230, 2011.
[27] M. Tylkowski & Brauer, “Mixed alkali effects in Bioglass® 45S5ˮ, Ournal of Non-Crystalline Solids, Vol. 376, pp. 175-181, 2013.
[28] S. Shahrabi, S. Hesaraki, S. Moemeni & Khorami, “Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ionsˮ, Ceramics International, Vol. 37, No. 7, pp. 2737-2746, 2011.
[29] X. Wu et al., “Zn and Sr incorporated 64S bioglasses: material characterization, in-vitro bioactivity and mesenchymal stem cell responsesˮ, Materials Science and Engineering: C, Vol. 52, pp. 242-250, 2015.
[30] X. Zhang & Y. Wu, “Structural characterization of sol–gel composites using TEOS/MEMO as precursorsˮ, Surface and Coatings Technology, Vol. 201, No. 12, pp. 6051-6058, 2007.
[31] A. Rainer & S. M. Giannitelli, “Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicineˮ, Acta biomaterialia, Vol. 4, No. 2, pp. 362-369, 2008.
[32] X. Zhao et al., “In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areasˮ, Journal Nanotoxicology, Vol. 5, No. 2, pp. 182-194, 2011.
[33] M. Ashok, “Crystallization of hydroxyapatite at physiological temperatureˮ, Materials Letters, Vol. 57, No. 13-14, pp. 2066-2070, 2003.
[34] A. Tavakolizadeh, “Investigation of osteoinductive effects of different compositions of bioactive glass nanoparticles for bone tissue engineeringˮ, ASAIO Journal, Vol. 63, No. 4, pp. 512-517, 2017.
[35] D. Khvostenko, “Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorationsˮ, Dental Materials, Vol. 32, No. 1, pp. 73-81, 2016.
_||_