Study the microstructure and hardness of FSW of API 70 steel at the presence of TiO2 particles
Subject Areas :Rasoul Pouriamanesh 1 , KAMRAN Dehghani 2
1 - Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran.
2 - Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran.
Keywords: Hardness, Microstructure, Friction Stir Welding (FSW), HSLA steel, titanium dioxide (TiO2),
Abstract :
In this study, the microstructural properties and hardness of Friction Stir Welded (FSWed) of high strength low alloy API X70 steel at the presence of titanium dioxide (TiO2) particles were investigated. In this regard, a homogeneous mixture of TiO2 and X70 steel powders were inserted into the weld groove before applying FSW. The FSW method was applied on HSLA X70 with and without addition of titanium oxide (TiO2) particles. The optical microscopy and Vickers microhardness measurements were employed to evaluate the microstructure and hardness of the different weldments zones. The results showed that the hardness of various zones in the weldment are strongly depended on the microstructure which is affected by heat input and stiring action. In addition, the TiO2 particles were homogenously dispersed in the stir zone of TiO2-doped weldment and subsequently has changed the microstructure and hardness. In particular, a transition from an acicular ferrite (AF) dominant microstructure with a hardness value of 300 HV to a polygonal ferrite (PF) dominant microstructure with a hardness value of 180 HV was observed by moving from top surface region to near root region.
[1] S, Tebyani & K. Dehghani, “Friction stir spot welding of interstitial free steel with incorporating silicon carbide nanopowdersˮ, The International Journal of Advanced Manufacturing Technology, Vol. 79, No. 1-4, pp. 343-350, 2015.
[2] S, Barnes, et al., “Friction stir welding in HSLA-65 steel: part I. Influence of weld speed and tool material on microstructural developmentˮ, Metallurgical and Materials Transactions, Vol. 43A, No. 7, pp. 2342-2355, 2012.
[3] L, Cui, et al., “Friction stir welding of a high carbon steelˮ, Scripta materialia, Vol. 56, No. 7, pp. 637-640, 2007.
[4] R. S. Mishra & Z. Ma, “Friction stir welding and processingˮ Materials Science and Engineering: R: Reports, Vol. 50, No.1, pp. 1-78, 2005.
[5] M. Peel, A. Steuwer & P. Withers, “Dissimilar friction stir welds in AA5083-AA6082. Part II: process parameter effects on microstructureˮ Metallurgical and Materials Transactions, Vol. 37A, No. 7, pp. 2195-2206.
[6] R. Palanivel, et al., “Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloysˮ, Materials & Design, Vol. 40, pp. 7-16, 2012.
[7] L. Murr, “A review of FSW research on dissimilar metal and alloy systemsˮ, Journal of Materials Engineering and Performance, Vol. 19, No. 8, pp. 1089- 1071, 2010.
[8] T, Chen, “Process parameters study on FSW joint of dissimilar metals for aluminum–steelˮ, Journal of materials science, Vol. 44, No. 10, pp. 2573-2580, 2009.
[9] T. Lienert, et al., “Friction stir welding studies on mild steelˮ Welding Journall-new York, Vol. 82. No. 1, pp. 1-S, 2003.
[10] M. Sinfield, et al., 7th Int. “Friction Stir Welding Symˮ, TWI Ltd., Abington, UK, 2008.
[11] A. P. Reynolds, et al., “Structure, properties, and residual stress of 304L stainless steel friction stir weldsˮ, Scripta Materialia, Vol. 48, No. 9, pp. 1289-1294, 2003.
[12] A. P. Reynolds, et al., “Friction stir welding of DH36 steelˮ, Science and Technology of Welding & Joining, Vol. 8, No. 6, pp. 455-460, 2003.
[13] Y. Chung, et al., “Friction stir welding of high carbon steel with excellent toughness and ductilityˮ, Scripta Materialia, Vol. 63, No. 2, pp. 223-226, 2010.
[14] V. Manvatkar, et al., Cooling rates and peak temperatures during friction stir welding of a high-carbon steel, Scripta Materialia, 2014.
[15] ع. ناظم الرعایا و م. فاضل نجفآبادی، "بررسی ریزساختار و خواص مکانیکی اتصال فولاد API-X65 به روش جوشکاری هم زن اصطکاکی"، فرآیندهای نوین در مهندسی مواد، دوره نهم، شماره 4، صفحه 75-84، 1394.
[16] ک. امینی، ع. فاتحی، و ع. بروجردی، "بررسی ریزساختار و خواص مکانیکی اتصال جوشکاری اصطکاکی فولاد CK35 به فولاد 18CrMo4"، فرآیندهای نوین در مهندسی مواد، دوره پنجم، شماره 4، صفحه 31-36، 1390.
[17] C. D. Sorensen & T. W. Nelson, “Friction stir welding of ferrous and nickel alloysˮ, Friction stir welding and processing, pp. 111-121, 2007.
[18] P. Xue, B. Xiao & Z. Ma, “Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional coolingˮ, Materials & Design, Vol. 56, pp. 848-851, 2014.
[19] S. Barnes, et al., “Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steelˮ, Materials Science and Engineering, Vol. 492A, No. 1, pp. 35-44, 2008.
[20] L. Fratini, et al., “A new fixture for FSW processes of titanium alloysˮ, CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 271-274, 2010.
[21] G. Buffa, L. Fratini & F. Micari, “Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloysˮ, Journal of Manufacturing Processes, Vol. 14, No. 3, pp. 289-296, 2012.
[22] Y. Zhang, et al., “Review of tools for friction stir welding and processingˮ, Canadian Metallurgical Quarterly, Vol. 51, No. 3. pp. 250-261, 2012.
[23] A. Pradeep, S. Muthukumaran & P. Dhanush, “Subshoulder formation during friction stir welding of steel using tungsten alloy toolˮ, Science and Technology of Welding and Joining, Vol. 18, No. 8, pp. 671-679, 2013.
[24] L. Wei & T. Nelson, “Correlation of microstructures and process variables in FSW HSLA-65 steelˮ, Welding journal, Vol. 90, No. 1-3, pp. 95s-101s, 2011.
[25] B. Beidokhti & R. Pouriamanesh, “Effect of Filler Metal on Mechanical Properties of HSLA Weldsˮ, in Welding Journal, 2015.
[26] B. Beidokhti, A. Koukabi & A. Dolati, “Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steelˮ, Journal of Materials Processing Technology, Vol. 20, No. 8, pp. 4027-4035, 2009.
[27] H. Yu, “Influences of microstructure and texture on crack propagation path of X70 acicular ferrite pipeline steelˮ, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Vol. 15, No. 6, pp. 683-687, 2008.
[28] L. Wei & T. W. Nelson, “Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steelˮ, Materials Science and Engineering, Vol. 556A, pp. 51-59, 2012.
[29] P. Xue, et al., “Enhanced mechanical properties in friction stir welded low alloy steel joints via structure refiningˮ, Materials Science and Engineering, Vol. 606A, pp. 322-329, 2014.
[30] M. Sharifitabar, et al., “Fabrication of 5052Al/Al 2 O 3 nanoceramic particle reinforced composite via friction stir processing routeˮ, Materials & Design, Vol. 32, No. 8, pp. 4164-4172, 2011.
[31] H. Arora, H. Singh & B. Dhindaw, “Composite fabrication using friction stir processing—a reviewˮ, The International Journal of Advanced Manufacturing Technology, Vol. 61, No. 9, pp. 1043-1055, 2012.
[32] M. C. Zhao, K. Yang & Y. Shan, “The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steelˮ, Materials Science and Engineering, Vol. 335A, No. 1, pp. 14-20, 2002.
[33] K. Junhua, et al., “Influence of Mo content on microstructure and mechanical properties of high strength pipeline steelˮ, Materials & design, Vol. 25, No. 8, pp. 723-728, 2004.
[34] M. Jafarzadegan, et al., “Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steelˮ, Materials Characterization, Vol. 74, pp. 28-41, 2012.
[35] M. Avazkonandeh Gharavol, M. Haddad Sabzevar & A. Haerian, “Effect of copper content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal depositsˮ, Materials & Design, Vol. 30, No. 6, pp. 1902-1912, 2009.
[36] X. Wan, et al., “The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metalsˮ, Materials Characterization, Vol. 67, pp. 41-51, 2012.
[37] H. Liu, et al., “Wear characteristics of a WC–Co tool in friction stir welding of AC4A+ 30vol% SiCp compositeˮ, International journal of machine tools and manufacture, Vol. 45, No. 14, pp. 1635-1639, 2005.
[38] J. M. Gregg, “Ferrite nucleation on non-metallic inclusions in steelˮ, University of Cambridge, 1995.
[39] Y. Ito, M. Nakanishi & Y. Komizo, “Effects of oxygen on low carbon steel weld metalˮ Metal Construction, Vol. 14, pp. 472-8, 1982.
[40] S. St-Laurent & G. L'Espérance, “Effects of chemistry, density and size distribution of inclusions on the nucleation of acicular ferrite of C Mn steel shielded-metal-arc-welding weldmentsˮ, Materials Science and Engineering, Vol. 149A, No. 2, pp. 203-216, 1992.
[41] M. Fattahi, et al., “Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metalsˮ, Micron, Vol. 45, pp. 107-114, 2013.
[42] W. Zeng, H. Wu & J. Zhang, “Effect of tool wear on microstructure, mechanical properties and acoustic emission of friction stir welded 6061 Al alloyˮ, Acta Metallurgica Sinica (English Letters), Vol. 19, No. 1, pp. 9-19, 2006.
[43] G. Thewlis, J. Whiteman & D. Senogles, “Dynamics of austenite to ferrite phase transformation in ferrous weld metalsˮ, Materials Science and Technology, Vol. 13, No. 3, pp. 257-274, 1997.
[44] S. S. Babu, “The mechanism of acicular ferrite in weld depositsˮ, Current opinion in Solid state and Materials Science, Vol. 8, No. 3, pp. 267-278, 2004.
[45] H. K. Sung, et al., “Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steelsˮ, Materials Science and Engineering, Vol. 528A, No. 9, pp. 3350-3357, 2011.
[46] T. K. Pal & U. K. Maity, “Effect of nano size TiO 2 particles on mechanical properties of AWS E 11018M type electrodeˮ, Materials Sciences and Applications, Vol. 2, No. 09, pp. 1285, 2011.
[47] R. Rai, et al., “Review: friction stir welding toolsˮ, Science and Technology of welding and Joining, Vol. 16, No. 4, pp. 325-342, 2011.
[48] E. Michael, “The Effects of Tool Texture on Tool Wear in Friction Stir Welding of X-70 Steelˮ, The Ohio State University, 2012.
[49] M. Bahrami, K. Dehghani & M. K. Besharati Givi, “A novel approach to develop aluminum matrix nano-composite employing friction stir welding techniqueˮ, Materials & Design, Vol. 53, pp. 217-225, 2014.
[50] K. Dehghani & A. Chabok, “Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steelsˮ, Materials Science and Engineering, Vol. 528A, No. 13, pp. 4325-4330, 2011.
[51] M. M. Husain, et al., “Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relationˮ, Journal of Materials Engineering and Performance, Vol. 24, No. 9, pp. 3673-3683, 2015.
[52] Y. Sun & H. Fujii, “The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper jointsˮ, Materials Science and Engineering, Vol. 528A, No. 16, pp. 5470-5475, 2011.
[53] A. Feng, B. Xiao & Z. Ma, “Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp compositeˮ, Composites Science and Technology, Vol. 68, No. 9, pp. 2141-2148, 2008.
[54] F. Humphreys, “Recrystallization mechanisms in two-phase alloysˮ, Metal Science, Vol. 13, No. 3-4,p. 136-145, 1979.