An investigation of the effect of sintering condition on the strength of Ni foam produced by electroplating method
Subject Areas :Akram Salehi 1 , Faeze Barzgar 2 , احمد مولودی 3
1 - Materials Research Group, ACECR khorasan razavi branch, Mashhad, Iran
2 - Materials Research Group, ACECR Khorasan razavi branch, Mashhad, Iran
3 - سازمان جهاددانشگاهی خراسان رضوی
Keywords: open cell nickel foam, polyurethane foam substrate, electroless deposition, electrodeposition coating,
Abstract :
Metal foams are a relatively new class of materials. They provide a high energy absorption ability, large surface to volume ratio, and a high stiffness to weight ratio because of the existence of porosity in their structure. One of the most applicable metal foams is nickel foam used as catalysts, filters, and silencers in different industries. In this work, Ni foam has been prepared by electrodeposition technique on a polyurethane sponge substrate. The produced foams were sintered at 600℃ and 1000℃ in the neutral atmosphere to eliminate organic substrate and increase their ductility. EDX analysis showed that carbon atoms have diffused into Ni deposition during sintering at 600 ℃, and also the samples sintered at 1000 ℃ have oxidized. The pressure tests indicated that the samples were ductile after the sintering process. By increasing ductility, plateau strength will reduce from 4.79 MPa to 3.6 MPa and 1.65 MPa for the samples sintered at 600℃ and 1000℃, respectively. Obtained results showed that heat treatments didn’t have any effects on the densification strain, but energy absorption reduced from 1.51 MJ/cm2 to 1.21 MJ/cm2 and 0.55 MJ/cm2 for the sintered samples at 600℃ and 1000℃, respectively.
[1] N. Nakamura, R. Takahashi, S. Sato, T. Sodesawa & S. Yoshida, “Ni/SiO2 catalyst with hierarchical pore structure prepared by phase separation in sol–gel process”, Physical Chemistry Chemical Physics, Vol. 2, No. 21, pp. 4983-4990, 2000.
[2] Q. Han, K. Liu, J. Chen & X. Wei, “A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes”, International Journal of Hydrogen Energy, Vol. 28, No. 11, pp.1207-1212, 2003.
[3] M. P. Browne, J. M. Vasconcelos, J. Coelho, M. O'Brien, A. A. Rovetta, E. K. McCarthy, H. Nolan, G. S. Duesberg, V. Nicolosi, P. E. Colavita & M. E. Lyons, “Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides”, Sustainable Energy & Fuels, Vol. 1, No. 1, pp.207-216, 2017.
[4] ن. سلیمی، د. مولا و ج. قاجار، "روش بهینه سیستم فیلتراسیون گاز طبیعی در ایستگاههای تقلیل فشار گاز شیراز(گزارش پروژه)"، دانشکده مهندسی، بخش مهندسی شیمی، نفت و گاز، 1385.
[5] L. Jinlong, L. Tongxiang, Y. Meng, K. Suzuki & H. Miura, “The plume-like Ni 3 S 2 supercapacitor electrodes formed on nickel foam by catalysis of thermal reduced graphene oxideˮ, Journal of Electroanalytical Chemistry, Vol. 786, pp. 8-13, 2017.
[6] L. Lin, S. Tang, S. Zhao, X. Peng & N. Hu, “Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nano sheet arrays on nickel foam for high-performance supercapacitorˮ, Electrochimica Acta, Vol. 228, pp. 175-182, 2017.
[7] M. S. Wu, W. A. Chen, F. Y. Chen & F. Y. “Chuang, Nickel cobaltite nanoflakes grown around nickel foam-supported expanded mesocarbon microbeads for battery-like electrochemical capacitorsˮ, Journal of Alloys and Compounds, Vol. 695, pp. 410-417, 2017.
[8] آ. وحیدیان، ع. سعیدی و م. گلعذار، "بررسی اثر چگالی جریان وpH بر رسوب دهی الکتریکی آلیاژ Fe-Ni و پارامترهای راندمانی فرایند آن"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره چهارم، زمستان ۱۳۹۴.
[9] س. قازانلو، ع. شکوه فر و ح. بخشی، "تولید نانو کامپوزیتی Ni-Co/SiO2 به روش رسوب الکتروشیمیایی جریان مستقیم"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره دوم، زمستان ۱۳۹۵.
[10] H. Adachi, K. Taki, S. Nagamine, A. Yusa & M. Ohshima, “Supercritical carbon dioxide assisted electroless plating on thermoplastic polymers”, The Journal of Supercritical Fluids, Vol. 49, No. 2, pp. 265-270, 2009.
[11] Jung, H. Natter, R. Hempelmann, S. Diebels, M. R. Koblischka, U. Hartmann & E. Lach, “Electrodeposition of nanocrystalline metals on open cell metal foams: improved mechanical properties”, ECS Transactions, Vol. 25, No. 41, pp. 165-172, 2010.
[12] Junga, M. Weinmannb & H. Natterb, “Electroforming and Electrodeposition on Complex 3D Geometries: Special Requirements and New Methods”, Handbook of Nanoelectrochemistry, springer, 2015.
[13] N. Kanani, “Electroplating: basic principles, processes and practice”, Elsevier, 2004.
[14] P. S. Liu, T. F. Li & C. Fu, “Relationship between Electrical Resistivity and Porosity for Porous Metals”, Materials Science and Engineering, Vol. 268, pp. 208-215, 1999.
[15] J. R. Brannan, A. S. Bean, A. J. Vaccaro & J. J. Stewart, “Continuous electroplating of conductive foams”, U.S. Patent 4, Vol. 978, pp. 431, 1990.
[16] K. K. Cushnie & S. T. Campbell, “Process for removal of polymer foams from nickel-coated substrates”, U.S. Patent 5, Vol. 735, pp. 977, 1998.
[17] D. Clodic, “Method for eliminating by evaporation a polyurethane substrate from a metallic foam”, W.O. Patent 2, Vol. 020, pp. 199, 2002.
[18] V. Ettel, “Apparatus and foam electroplating process”, U.S. Patent 8, Vol. 110, pp. 076, 2012.
[19] ISO13314. “Mechanical testing of metals—ductility testing—compression test for porous and cellular metals”, 2011.
[20] U. Ramamurty & A. Paul, “Variability in Mechanical Properties of a Metal Foam”, Acta Materialia, Vol. 52, pp. 869-876, 2004.
[21] K. Lee & J. J. Lewandowski, “Effects of microstructural characteristics on mechanical properties of open-cell nickel foams”, Materials science and technology, Vol. 21, No. 11, pp. 1355-1358, 2005.
[22] P. T. Tang, H. Dylmer & P. Mller, “Nickel Coatings and Electroforming Using Pulse Reversal Plating”, CiteSeer, 1995.
[23] P. S. Liu & K. M. Liang, “Preparation and corresponding structure of nickel foam”, Materials science and technology, Vol. 16, pp. 575-578, 2000.
[24] م. قربانی، "پوشش دادن فلزات"، جلد 1، موسسه انتشارات علمی دانشگاه صنعتی شریف، چاپ سوم، 1391.
[25] Y. C. Dai, D. Chen & W. K. Yuan, “First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers”, Carbon, Vol. 45, No. 1, pp. 21-27, 2007.
[26] S. Berry, “Diffusion of carbon in nickel”, Journal of Applied Physics, Vol. 44.8, pp. 3792-3793, 1973.
[27] Wiltner, C. Linsmeier & T. Jacob, “Carbon reaction and diffusion on Ni (111), Ni (100), and Fe (110): kinetic parameters from x-ray photoelectron spectroscopy and density functional theory analysis”, The Journal of chemical physics, Vol. 129, No. 8, pp. 084-704, 2008.
[28] F. C. Schouten, O. L. J. Gijzeman & G. A. Bootsma, “Interaction of methane with Ni (111) and Ni (100), diffusion of carbon into nickel through the (100) surface, An aes-leed study”, Surface Science, Vol. 87, No. 1, pp. 1-12, 1979.
[29] M. Singleton & P. Nash, “The C-Ni (carbon-nickel) system”, Journal of Phase Equilibria, Vol. 10, No. 2, pp. 121-126, 1989.
[30] S. Garruchet, O. Politano, P. Arnoux & V. Vignal, “Diffusion of oxygen in nickel: A variable charge molecular dynamics study”, Solid State Communications, Vol. 150, No. 9, pp. 439-442, 2010.
[31] J. W. Park & C. J. Altstetter, “The diffusion and solubility of oxygen in solid nickel”, Metallurgical Transactions, Vol. 18A, pp. 43-50, 1987.
[32] O. B. Olurin, D. S. Wilkinson, G. C. Weatherly, V. Paserin & J. Shu, “Strength and ductility of as-plated and sintered CVD nickel foams”, Composites science and technology, Vol. 63, No. 16, pp. 2317-2329, 2003.
[33] M. F. Ashby & R. F. Mehl Medalist, “The Mechanical Properties of Cellular Solids”, Metallurgical Transactions, Vol. 14, pp. 1755-1769, 1983.
[34] M. Shehata Aly, “Behavior of Closed Cell Aluminium Foams Upon Compressive Testing at Elevated Temperatures: Experimental Results”, Materials Letters, Vol. 61, pp. 3138-3141, 2007.
[35] E. Kozaa, M. Leonowicza, S. Wojciechowskia & F. Simancik, “Compressive Strength of Aluminium Foams”, Materials Letters, Vol. 58, pp. 132– 135, 2004.
[36] M. Gauthier, L. P. Lefebvre, Y. Thomas & M. N. Bureau, “Production of metallic foams having open porosity using a powder metallurgy approach”, Materials and manufacturing processes, Vol. 19, No. 5, pp. 793-811, 2004.
_||_