A study of hardness and wear properties in the powder hard covering established in the Fe- Cr –C- Mo system on the carbonic simple steel by GTAW welding method
Subject Areas :Mohammad Mehdi Ghaffari 1 , Hossein Paydar 2 , محمدرضا خانزاده قرهشیران 3
1 - MSc student, Department of Materials Engineering, Majlesi Branch, Islamic Azad University, Majlesi, Isfahan, Iran
2 - Assistant professor, Department of Mecanical Engineering, Tiran Branch, Islamic Azad University, Tiran, Isfahan
3 - استادیار، مرکز تحقیقات مهندسی پیشرفته، واحد شهر مجلسی، دانشگاه آزاد اسلامی، مجلسی، اصفهان، ایران
Keywords: microhardness assessment, hypotectic, hard face layer,
Abstract :
In this research, a combination of Ferro- chromium powders (variable amount) and ferromolybdenum and graphite (constant amount) were coated on the st37 carbon steel substrate through Gas Tungsten Arc Welding (GTAW). In order to study properties of the layer established under the layer, scanning electron microscope (SEM), EDS element microanalysis and microhardness assessment have been used, and x-ray diffraction analysis (XRD) specified that microstructure of the samples consists of austenite and (Cr,Fe)7 , C3 carbides. In addition, it was specified that by the increase of carbon and chromium containing hard face layers, a part of carbon is spent on the formation of Cr7C3 chromium carbide, and the remainder has played a role in the formation of molybdenum carbide and chromium led to the increase of hardness. Results of the wear test specified that the highest wear resistance relates to a sample containing 13.45 chromium percentage. SEM investigation of worn surfaces in the samples specified that wear mechanism was plowing type, cutting type and cracking type.
[1] F. Molleda, J. Mora, F. J. Molleda, E. Mora, E. Carrillo & B. G. Mellor, “A study of the solid–liquid interface in cobalt base alloy (Stellite) coatings deposited by fusion welding (TIG)ˮ, Materials characterization, Vol. 57. No. 4, pp. 227-231, 2006.
[2] F. Madadi, F. Ashrafizadeh & M. Shamanian, “Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSMˮ, Journal of Alloys and Compounds, Vol. 510, No. 1, pp. 71-77, 2012.
[3] J. R. Davis, ASM handbook, volume 6: welding, brazing and soldering. ASM International, Materials, USA, pp. 787-799, 1993.
[4] Y. C. Lin & Y. C. Chen, “Reinforcements affect mechanical properties and wear behaviors of WC clad layer by gas tungsten arc weldingˮ, Materials & Design, Vol. 45, pp. 6-14, 2013.
[5] S. Buytoz, M. Ulutan & M. M. Yildirim, “Dry sliding wear behavior of TIG welding clad WC composite coatingsˮ, Applied Surface Science, Vol. 252, No. 5, pp. 1313-1323, 2005.
[6] M. F. Buchely, J. C. Gutierrez, L. M. Leon & A. Toro, “The effect of microstructure on abrasive wear of hardfacing alloysˮ Wear, Vol. 259, No. 1, pp. 52-61, 2005.
[7] A. Röttger, S. Weber & W. Theisen, “Supersolidus liquid-phase sintering of ultrahigh-boron high-carbon steels for wear-protection applicationsˮ Materials Science and Engineering, Vol. 532A, pp. 511-521, 2012.
[8] S. G. Sapate & A. V. RamaRao, “Erosive wear behaviour of weld hardfacing high chromium cast irons: effect of erodent particlesˮ Tribology International, Vol. 39, No. 3, pp. 206-212, 2006.
[9] D. K. Dwivedi, “Microstructure and abrasive wear behaviour of iron base hardfacingˮ, Materials Science and Technology, Vol. 20, No. 10, pp. 1326-1330, 2004.
[10] R. Chotěborský, P. Hrabě, M. Müller, J. Savková & M. Jirka, “Abrasive wear of high chromium Fe-Cr-C hardfacing alloysˮ, Research in Agricultural Engineering, Vol. 54, No. 4, pp. 192-198, 2008.
[11] C. W. Kuo, C. Fan, S. H. Wu & W. Wu, “Microstructure and wear characteristics of hypoeutectic, eutectic and hypereutectic (Cr, Fe) 23C6 carbides in hardfacing alloysˮ, Materials transactions, Vol. 48, No. 9, pp. 2324-2328, 2007.
[12] S. Atamert & H. K. D. H. Bhadeshia, “Microstructure and stability of Fe- Cr- C hardfacing alloysˮ, Materials Science and Engineering, Vol. 130A, No. 1, pp. 101-111, 1990.
[13] C. M. Chang, Y. C. Chen & W. Wu, “Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloyˮ, Tribology international, Vol. 43, No. 5, pp. 929-934, 2010.
[14] M. Kirchgaßner, E. Badisch & F. Franek, “Behaviour of iron-based hardfacing alloys under abrasion and impactˮ, Vol. 265, No. 5, pp. 772-779, 2008.
[15] E. Zumelzu, I. Goyos, C. Cabezas, O. Opitz & A. Parada, “Wear and corrosion behaviour of high-chromium (14–30% Cr) cast iron alloysˮ, Journal of Materials Processing Technology, Vol. 128, No. 1, pp. 250-255, 2002.
[16] ح. ثابت، ش. خیراندیش، ش. میردامادی، م. گودرزی، "بررسی ریزساختار و مشخصات کاربیدهای (Cr,Fe)7C3در آلیاژهایپریوتکتیک روکش سخت پایهFe-Cr-C "، فصلنامه علمی پژوهشی فرآیندهای نوین مهندسی مواد، شماره اول، بهار 1390، ص 21-34.
[17] ح. ثابت، س. ر. امبرآبادیزاذه، م. صادقی و م. ن. میرزا،"بررسی ریزساختار و مقاومت به سایش لایه رویه سخت پایه Fe-C-Nb بر روی فولاد ساده کربنی" فصلنامه علمی پژوهشی فرآیندهای نوین مهندسی مواد، شماره سوم، ص43-50، پائیز 1388.
[18] S. Atamert & H. K. D. H. Bhadeshia, “Microstructure and stability of Fe- Cr- C hardfacing alloysˮ Materials Science and Engineering, Vol. 130A, No. 1, pp. 101-111. 1990.
[19] ب. صمیمی، ع. سعادت و م. ر. خانزاده قره شیران، بررسی تاثیر افزودن مولیبدن بر خواص سایشی و متالوژیکی پوشش های سخت Fe-Cr-C، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد نجف آباد، دانشکده مهندسی مواد، 1394.
[20] J. Yang, J. Tian, F. Hao, T. Dan, X. Ren, Y. Yang & Q. Yang, “Microstructure and wear resistance of the hypereutectic Fe–Cr–C alloy hardfacing metals with different La 2 O 3 additivesˮ, Applied Surface Science, Vol. 289, pp. 437-444, 2014.
_||_