Fabrication of Al2O3/SiC Nanoparticles from the Rice Hush Ash via Self-Propagation High-Temperature Synthesis and Ball Milling
Subject Areas :قاسم دینی 1 , Morteza Hoseini 2
1 - University of Isfahan
2 - دانشگاه اصفهان
Keywords: nanoparticles, Ball milling, SHS, Al2O3/SiC, Rice Hush Ash,
Abstract :
In this study, silica obtained from the rice hush was used to synthesis of Al2O3/SiC nanoparticles. The rice husk is an agricultural residue abundantly available in rice producing countries such as Iran. For this reason, the ash obtained from the burning of the rice hush which contains more than 93% silica, and aluminum and carbon powders with the molar ratios of 3:4:6 were mixed and then pressed into pellets by using a cylindrical die under a pressure 50MPa. In order to conduct the Self-Propagation High-Temperature Synthesis (SHS), the produced pellets were placed in an electrical furnace at 850oC under the argon gas atmosphere. Then, a planetary ball-milling for 4, 8, 12, 16 and 24h was used to decrease the particle size of the synthesized composite. The results of XRF, XRD, SEM and DLS investigations shown that the rice hush ash can be used to fabricate Al2O3/SiC nanoparticles via SHS and ball-milling and the size of synthesized particles after ball milling for 4-24h is in the range of 870-65nm.
[1] Makino, “Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process”, Progress in Energy and Combustion Science, Vol. 27, pp. 1-74, 2001.
[2] P. Mossino, “Review-Some aspects in self-propagating high-temperature synthesis”, Ceram. Inter., Vol. 30, pp. 311-332, 2004.
[3] A. G. Merzhanov, “Combustion processes that synthesize materials”, J. Mater. Processing Technology, Vol. 56, pp. 222-241, 1996.
[4] K. C. Patil, S. T. Aruna & T. Mimani, “Combustion synthesis: an update”, Current opinion in solid state and mater. sci., Vol. 6, pp. 507-512, 2002.
[5] J. Subrahmanyam & M. Vijayakumar, “Review-self-propagating high-temperature synthesis”, J. Mater. Sci., Vol. 27, pp. 6249-6237, 1992.
[6] ی. م. علی شریفی، "اثر فعالسازی مکانیکی بر کاهش اندازه ذرات SiC/Al2O3 در کامپوزیت ایجاد شده بوسیله سنتز خود انتشار دمای بالا و بر سینتیک واکنش"، پایاننامه کارشناسی ارشد دانشگاه صنعتی اصفهان، 1389.
[7] S. T. Aruna & A. S. Mukasyan, “Combustion synthesis and nanomaterials”, Current Opinion in Solid State and Materials Science, Vol. 12, pp. 44-50, 2008.
[8] ع. اسماعیلی علی آبادی و ع. سعیدی، "تولید کامپوزیت TiC در زمینه آلومیناد نیکل به روش سنتز احتراقی انفجاری"، فرایندهای نوین در مهندسی مواد، شماره 3، سال 2، صفحه 1، پاییز، 1387.
[9] ع. حاج علیلو، ع. سعیدی و م. عباسی، "تولید کاربید تیتانیم و نانو کامپوزیت TiC-Al2O3 با استفاده از روتیل به روش سنتز احتراقی و آلیاژسازی مکانیکی"، فرایندهای نوین در مهندسی مواد، شماره 1، سال 4، صفحه 1، بهار، 1389.
[10] Y. M. Ko, W. T. Kwon & Y. W. Kim, “Development of Al2O3–SiC composite tool for machining application”, Ceramics International, Vol. 30, pp. 2081-2086, 2004.
[11] M. Belmonte, M. I. Nieto, M. I. Osendi & P. Miranzo, “Influence of the SiC grain size on the wear behaviour of Al2O3/SiC composites”, Journal of the European Ceramic Society, Vol. 26, pp. 1273-1279, 2006.
[12] Y. M. Ko & W. T. Kwon, “Cutting performance of Al2O3-SiC nanocomposite tools”, Journal of Materials Science, Vol. 40, pp. 785-787, 2005.
[13] R. Barea, M. Belmonte, M. I. Osendi & P. Miranzo, “Thermal conductivity of Al2O3/SiC platelet composites”, Journal of the European Ceramic Society, Vol. 23, pp. 1773-1778, 2003.
[14] P. G. Neudeck, “Silicon Carbide Technology”, VLSI Handbook, CRC Press, 2006.
[15] L. S. Abovyan, H. H. Nersisyan, S. L. Kharatyan, R. Orrù, R. Saiu, G. Cao & D. Zedda, “Synthesis of alumina–silicon carbide composites by chemically activated self-propagating reactions”, Ceramics international, Vol. 27, pp. 163-169. 2001.
[16] J. H. Lee, C. Y. An, C. W. Won, S. S. Cho & B. S. Chun, “Characteristics of Al2O3–SiC composite powder prepared by the self-propagating high-temperature synthesis process and its sintering behavior”, Materials Research Bulletin, Vol. 35, pp. 945-954, 2000.
[17] F. Bondioli, L. Barbieri, A. M. Ferrari & T. Manfredini, “Characterization of Rice Husk Ash and Its Recycling as Quartz Substitute for the Production of Ceramic Glazes”, J. Am. Ceram. Soc., Vol. 93, pp. 121-126, 2010
[18] kumar, K. Mohanta, D. Kumar & O. Parkash, “Properties and Industrial Applications of Rice husk: A review”, International Journal of Emerging Technology and Advanced Engineering, Vol. 2, pp. 86-90, 2012.
[19] S. D. Nagrale, H. Hajare & P. R. Modak, “Utilization of Rice Husk Ash”, International Journal of Engineering Research and Applications, Vol. 2, pp. 1-5, 2012.
[20] G. Abood Habeeb & H. Bin Mahmud, “Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material”, Materials Research, Vol. 13, pp. 185-190, 2010.
[21] S. Kumar, P. Sangwan, R. Dhankhar, V. Mor & S. Bidra, “Utilization of Rice Husk and Their Ash: A Review”, Research Journal of Chemical and Environmental Sciences Res. J. Chem. Env. Sci., Vol. 1, pp. 126-129, 2013.
[22] S. Niyomwas, “Synthesis and characterization of silicon-silicon carbide composites from rice husk ash via self-propagating high temperature synthesis”, J. Met. Mat. Min, Vol. 19, pp. 25-21, 2009.
[23] T. Chanadee & S. Niyomwas, “Self-Propagating High-Temperature Synthesis of Si-SiC Composite Powder”, Key Engineering Materials, Vol. 675, pp. 623-626, 2016.
[24] W. J. MoberlyChan, J. J. Cao, C. J. Gilbert, R. O. Ritchie & L. C. De Jonghe, “The Cubic-To-Hexagonal Transformation to Toughen SiC”, Ceram. Micro., pp. 177-190, 1998.
[25] C. E. Ryan, R. C. Marshall, J. J. Hawley, I. Berman & D. P. Considine, “The Conversion of Cubic and Hexagonal Silicon Carbide as a Function of Temperature and Pressure”, Aniso. Single-Crys. Refra. Comp., pp. 177-197, 1968.
_||_