Subject Areas :
علی حیدری مقدم 1 , حسین یوزباشی زاده 2 , ولی اله دشتی زاد 3 , علی کفلو 4
1 - دانشگاه آزاد اسلامی واحد دزفول
2 - دانشگاهآزاد اسلامی واحد علوم و تحقیقات تهران
3 - سازمان پژوهشهای علمی و صنعتی ایران
4 - سازمان پژوهشهای علمی و صنعتی ایران
Keywords:
Abstract :
[1] C. Benvenuti, “Non-evaporable getters: from pumping strips to thin film coatings”, In: Proc. Of EPAC–1998, Stockholm, Sweden, pp. 200, 1998.
[2] B. Ferrario, “Chemical pumping in vacuum technology” Vacuum, Vol. 47, pp. 363-370, 1998.
[3] C. Benvenuti, P. Chiggiato, F. Cicoira & V. Ruzinov, “Nitriding decreasing surface outgassing by thin film getter coatings”, Vacuum, Vol. 50, pp. 57–63, 1998.
[4] Y. Zhang, XY. Wei, CH. Mao, TF. Li & P. Yuan, “Preparation and pumping characteristics of Ti–7.5 wt. % Mo getter”, J Alloys Compd, Vol. 485, pp. 200–203, 2009.
[5] B. Chabot & E. Parthe, “Sc3Co, a new structure type related to Fe3C and Re3B by periodic unit-cell twinning”, Acta Cryst, Vol. B34, pp. 3173–3177, 1978.
[6] AE. Dwight & TE. Klippert, “Variants of Zr3Co and their superconducting critical temperature”, Mat Res Bull, Vol. 13, pp. 595–598, 1978.
[7] IY. Zavaliy, RV. Denys, R. Cˇerný, IV. Koval’chuck, G. Wiesinger & G. Hilscher, “Hydrogen-induced changes in crystal structure and magnetic properties of the Zr3MOx (M = Fe, Co) phases”, J Alloys Compd, Vol. 386, pp. 26–34, 2005.
[8] R. Pottgen, M. Lukachuk & R. Hoffmann, “Re3B type intermetallics–crystal chemistry, bonding and properties”, Z Kristallogr, Vol. 221, pp. 435–44, 2006.
[9] SF. Matar, “Drastic changes of electronic, magnetic, mechanical and bonding properties in Zr2Co by hydrogenation”, Intermetallics, Vol. 36, pp. 25–30, 2013.
[10] SF. Matar, “Drastic changes in electronic, magnetic, mechanical and bonding properties from Zr2CoH5 to Mg2CoH5”, J Solid State Chem, Vol. 200, pp. 209–214, 2013.
[11] SAES Getter, “Technical report. St 171 and St 172 sintered porous Getters”.
[12] SAES Getter, “Technical report. St 101 none-evaporable Getters”.
[13] SAES Getter, “Technical report. St 707 none-evaporable Getters activatable at low temperatures”.
[14] M. Coleman, D. Chandra, J. Wermer, TJ. Udovic, “Zirconium iron disproportion during hydriding reactions in nuclear gettering operation”, Adv Mater Energy Convers II. TMS (The Minerals, Metals & Materials Society), 2004.
[15] EJ. Larson, KJ. Cook, JR. Wermer & DG. Tuggle, “Nitriding reactions with a Zr–Mn–Fe metal getter”, J Alloys Compd, Vol. 330–332, pp. 897–901, 2002.
[16] SAES Getter, “Technical report. CapaciTorr Pumps-MK5 Series”.
[17] L. Detian & C. Yongjun, “Applications of non evaporable getter pump in vacuum metrology”, Vacuum, Vol. 85, pp. 739–743, 2011.
[18] H. Londer, GR. Myneni, P. Adderley, G. Bartlok & W. Knapp, “New high capacity getter for vacuum insulated mobile LH2 storage tank systems”, Vacuum, Vol. 82, pp. 431–434, 2008.
[19] G. Valdre, D. Zacchini, R. Berti, A. Costa & A. Alessandrini, “Nitrogen sorption tests, SEM-windowless EDS and XRD analysis of mechanically alloyed nanocrystalline getter materials”, Nanostruc Mater, Vol. 11, pp. 821–829, 1999.
[20] D. Petti, M. Cantoni, M. Leone, R. Bertacco & E. Rizzi, “Activation of Zr–Co–rare earth getter films: An XPS study” Appl Surf Sci, Vol. 256, pp. 6291–6296, 2010.
[21] JG. Bu, CH. Mao, Y. Zhang, XY. Wei & J. Du, “Preparation and sorption characteristics of Zr–Co–RE getter films”, J Alloys Compd, Vol. 529, pp. 69–72, 2012.
[22] Y. Hongyan, W. Jinku & G. Chuxi, “The improvement of the volume ratio measurement method in static expansion vacuum system”, Physics Procedia, Vol. 32, 492–497, 2012.
[23] P. Jeshin, W. Kim & M. Won, “Hydrogen sorption in zirconium and relevant surface phenomena”, Mater Trans, Vol. 48, pp. 1012–1016, 2007.
[24] H. Okamoto, “Co-Zr (Cobalt-Zirconium)”, JPEDAV, Vol. 32, pp. 169–170, 2011.
[25] NC. Abhik, R. Vivek, V. Udhayabanu & BS. Murty, “Influence of heat of formation of B2/L12 intermetallic compounds on the milling energy for their formation during mechanical alloying”, J Alloys Compd, Vol. 465, pp. 106–112, 2008.
[26] EIC. Suryanarayana & VV. Boldyrev, “The science and technology of mechanical alloying”, Mater Sci Eng A, Vol. 304–306, pp. 151–158, 2001.
[27] M. Alizadeh, G. Mohammadi, GHA. Fakhrabadi & MM. Aliabadi, “Investigation of chromium effect on synthesis behavior of nickel aluminide during mechanical alloying process”, J Alloys Compd, Vol. 505, pp. 64–69, 2010.
[28] AH. Molladavoudi, S. Amirkhanlou, M. Shamanian & F. Ashrafizadeh, “The production of nanocrystalline cobalt titanide intermetallic compound via mechanical alloying”, Intermetallics, Vol. 29, pp. 104–109, 2012.
[29] AH. Taghvaei, M. Stoica, G. Vaughan, M. Ghaffari, S. Maleksaeedi & K. Janghorban, “Microstructural characterization and amorphous formation in Co40Fe22Ta8B30 powders produced by mechanical alloying”, J Alloys and Compd, Vol. 512, pp. 85–93, 2012.
[30] R. Ashiri, “A Mechanistic study of nanoscale structure development, phase transition, morphology evolution, and growth of ultrathin barium titanate nanostructured films”, Metall Mat Trans A, Vol. 45, pp. 4138–4154, 2014.
[31] R. Ashiri, “From inorganic/organic nanocomposite based on chemically hybridized CdS–TGA to pure CdS nanoparticles”, J Ind Eng Chem, DOI: 0.1016/j.jiec.2014.05.002.
[32] R. Ashiri, A. Moghtada & R. Ajami, “Sonochemical synthesis of SrTiO3 nanocrystals at low temperature”, Int J Appl Ceram Technol, DOI:10.1111/ijac.12315, in press.