The Synthesis Of Nanocomposites (MoSi2-20% TiC) is activated by chemical Combustion Synthesis Method (COSHS)
Subject Areas :مهدی بدرلو 1 , سید علی طیبی فرد 2 , محمد ذاکزی 3
1 - کارشناس فلزی- وزارت صنعت، معدن و تجارت
2 - استادیار- پژوهشگاه مواد و انرژی
3 - استادیار- پژوهشگاه مواد و انرژی
Keywords: nanocomposite, Titanium carbide, Molybdenum Disilicide, Chemical Activated Self-Propagation Combustion Synthesis (COSHS),
Abstract :
Add titanium carbide in the compound molybdenum disilicide to increased mechanical strength. in this research element of the raw materials used to form MoSi2-TiC nanocomposite. the plan in this research procedure was based on combustion synthesis, chemical activation mechanism (COSHS). in this study, activation of elemental powders Mo, Si, Ti and C were used in chemical oven. first, on the basis of stoichiometric silicon powder raw materials including metal powder, molybdenum, titanium and carbon powder were prepared on the basis of 20% by weight of titanium carbide. to identify chemical compounds that react with itself, provides the heat necessary to react original composition (chemical oven), of compounds that have high ΔG was used. powders and tablets are pressed by uniaxial compaction of composite samples were prepared and chemical oven. synthesizing is done in atmospheric argon controlled tubular furnace the temperature between 700 - 1100 °C. to identify phases, xrd analysis and to evaluate morphology, sem and tem images were used. results show that the best process conditions for synthesis MoSi2-TiC nanocomposite with COSHS method were: temperature 850 °C selected as optimum conditions and composition (8Al + 4Mg + 3SiO2 + 5TiO2) as suitable chemical oven. the grain size calculation by reitveld method showed the size of titanium carbide crystallite and molybdenum disilicide in optimum condition of approximately was 77 nm and above 100 nm respectively. considering the images of sem and tem proved that a nanostructure composite has been synthesized
[1] ع. حائریان اردکانی و م. همتی، "ترکیبهای بین فلزی"، انتشارات دانشگاه فردوسی مشهد، مشهد، 1382.
[2] ع. طیبی فرد، پایان نامه کارشناسی ارشد، پژوهشگاه مواد و انرژی، 1377.
[3] م. رمضانی، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد ساوه، 1390.
[4] L. Sun & J. Pan, “TiC whisker-reinforced MoSi2 matrix composites”, Materials Letters, Vol. 51, pp. 270–274, 2001.
[5] J. Meng, J. Lu & S. Y. Wan, “Preparation and properties of MoSi2 Composites reinforced by TiC, TiCN, and TiB2” Mater. Sci. Eng. A, Vol. 396, pp. 277-284, 2005.
[6] L. Sun & J. Pan, “Fabrication and characterization of TiC-particle-reinforced MoSi2 composite”, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China , Vol. 17, 2001.
[7] K. Sheela Ramasesha, P. S. Tantri & K. Anup, Bhattacharya, “Synthesis and properties of MoSi2 based engineering ceramics”, Journal of Chemical Sciences, Vol. 113, Issue 5, pp. 633-64, 2001.
[8] Q. Zhu, K. Shobu, Y. Zeng & T. Watanabe, “Oxidation Behavior Of Hot-Pressed Mosi2-Tic Composite”, Journal Of Materials Science, Vol. 36, pp. 313– 319, 2001.
[9] ع. حاج علیلو، ع. سعیدی و م. عباسی، "تولید کاربید تیتانیم و نانو کامپوزیت TiC-Al2O3 با استفاده از روتیل به روش سنتز احتراقی و آلیاژ سازی مکانیکی"، مجله فرآیند های نوین در مهندسی مواد، دوره 4، شماره 1، صفحه 1-9، 1389.
[10] م. رحیمی پور و ع. احمدی، "تاثیر تشکیل گرافیت بر خواص سایشی کامپوزیت Fe-TiC حاوی 6 درصد حجمی کاربید تیتانیم"، مجله فرآیندهای نوین در مهندسی مواد، دوره3، شماره 1، صفحه 29-36، 1388.
[11] M. Zakeri & M. Ramezani, “Synthesis of MoSi2–TiC nanocomposite powder via mechanical alloying and subsequent annealing”, ceramics international, Vol. 38, pp. 1353–1357, 2012.
[12] J. Subrahmanyam & R. mohan Rao, “Cumbustion synthesis of MoSi2 TiC composite”, kanchanbagh, heydarabad-500258, india, j. mater. res, Vol. 10, No. 5, 1995.
[13] م. ح. عنایتی، "مواد نانو ساختار"، انتشارات جهاد دانشگاهی واحد اصفهان، چاپ اول، پائیز، 1386.
[14] J. Subrahmanyam & M. Vijayakumar, “Review self-propagating high-temperature synthesis”, journal of materials science, Vol. 27, pp. 6249-6273, 1992.
[15] Zuhair, Munir & U. Anselmi-Tamburini, “Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion”, materials science reports, Vol. 3, pp. 277-365, 1989.
[16] Varma & J. P. Lebrat, “combustion synthesis of advanced materials”, chemical engineering science, Vol. 47, No. 9-11, pp. 2179-2194, 1992.
[17] B. Khina, “effect of mechanical activation on shs: physicochemical mechanism”, international journal of self-propagating high-temperature synthesis, Vol. 17, No. 4, pp. 211–217, 2008.
[18] Barin, “Thermochemical data of pure substances”, third edition, in collaboration with gregor platzki, 1995.
[20] http://www.crct.polymtl.ca/fact/documentation/sgte/sgte_figs.htm
_||_