Effects of Cypermethrin on Serum Biochemistry and Liver Histopathology of Anabas testudineus
Subject Areas :
Journal of Chemical Health Risks
Babu Velmurugan
1
,
Elif Ipek Satar
2
,
Murat Yolcu
3
,
Ersin Uysal
4
1 - Department of Zoology, P.G and Research and Biotechnology, Sir Theagaraya College, Chennai, Tamil Nadu, India
2 - Dicle University, Pharmacy Faculty, Diyarbakir TURKEY
3 - Department of Basic Pharmaceutical Sciences, Faculty Pharmacy, Dicle University, 21280 Diyarbakir, Turkey
4 - Department of Technical Programs, Diyarbakır Vocational School, University of Dicle, 21280 Diyarbakır, Turkey
Received: 2021-12-27
Accepted : 2023-06-25
Published : 2023-06-25
Keywords:
Biochemical parameters,
liver,
Pesticide,
Histopathology,
Abstract :
Cypermethrin is one of the most commonly used pesticides. In this study, the effects of cypermethrin on serum biochemistry and liver histology of Anabas testudineus were investigated. The fish have been exposed to sub-lethal concentrations of cypermethrin for the 7th, 14th, and 21st days and one control was considered. AST, ALT, and ALP showed concentration- and days-dependent increases in all experimental groups. Bilirubin levels increased significantly (p<0.05) in cypermethrin groups. No statistically significant difference in bilirubin levels was observed between the concentrations of 0.015 and 0.030 mg L-1 on days 7th and 14th. Protein levels decreased in response to cypermethrin on all days when compared to controls. Statistically significant differences in protein levels weren’t observed between all concentrations on days 7th and 14th and between concentrations of 0.015 and 0.030 mg L-1 on days 21st. Light microscopy revealed hepatocyte hypertrophy, sinusoidal dilation, granular degeneration, congestion, pycnosis, and focal necrosis in the liver. AST ALT, ALP, bilirubin, protein levels, and histopathology can be used as possible markers for biological monitoring and chemical risk assessment in aquatic organisms.
References:
Collins P., Cappello S., 2006. Cypermethrin toxicity to aquatic life: Bioassay for the fresh water prawn Palaeomonetes argentines. Environ. Contam. Toxicol. 18, 10-14.
Singh N.N., Das V.K., Srivastava A.K., 2002. Insecticides and ionic regulation in teleosts: A review. Zool Pol. 47, 21-36.
Werner I., Young T.M., Pyrethroid Insecticides-Exposure and Impacts in the Aquatic Environment. In: The Encyclopedia of the Anthropocene. Dominick, D., Goldstein, M.I., Eds., Elsevier: Oxford, 2018.
Prusty A.K., Meena D.K., Mohapatra S., Panikkar P., Das P., Gupta S.K., Behera B.K., 2015. Synthetic pyrethroids (Type II) and freshwater fishculture: Perils and mitigations. Int Aquat Res. 7, 163-191.
Kumar A., Sharma B., Pandey R.S., 2007. Preliminary evaluation of the acute toxicity of cypermethrin and lambda-cyhalothrin to Channa punctatus. B Environ Contam Tox. 79, 613-616.
Svobodova Z., Luskova V., Drastichova J., Svoboda M., Zlabek V., 2003. Effect of deltamethrin on haematological indices of common carp (Cyprinus carpio L.). Acta Vet Brno. 72, 79-85.
Velmurugan B., Selvanayagan M., Cengiz E.I., Bilici S., Satar A., 2014. Surface structures of gill, scale and erythrocyte of Anabas testudineus exposed to sublethal concentration of cypermethrin. Environ Toxicol Phar. 37(3), 1109-1115.
Bradbury S.P., Coats J.R., 1989. Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem. 8, 373-380.
Zalina I., Saad C.R., Rahim A.A., Christianus A., Harmin S.A., 2011. Breeding per-formance and the effect of stocking density on the growth and survival of climbing perch, Anabas testudineus. J Fish Aquat Sci. 6, 834-839.
Tasneem D., Yasmeen R., 2020. Biochemical changes in carbohydrate metabolism of the fish–Cyprinus carpio during sub-lethal exposure to biopesticide-Derisom. Iran J Fish Sci. 19(2), 961-973.
Savaş N., 2014. Approach to liver function test abnormalities. TJTFP. 5(3), 1-7.
Hook S.E., Gallagher E.P., Batley G.E., 2014. The role of biomarkers in the assessment of aquatic ecosystem health. Integr Environ Assess Manag. 10(3), 327-341.
Yancheva V., Velcheva I., Georgieva E., 2016. Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. App Ecol Env Res. 14(1). 47-75.
Gernhofer M., Pawet M., Schramm M., Müller E., Triebskorn R., 2001. Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J. Aquat. Ecosyst. Stress Recovery. 8, 241-260.
van der Oost R., Beyer J., Vermeulen N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Phar. 13(2), 57-149.
Salamat N., Zarie M., 2012. Using of fish pathological alterations to assess aquatic pollution: A review. WJFMS. 4(3), 223-231,
Mohamed F.A.S., 2009. Histopathological studies on Tilapia zillii and Solea vulgaris from Lake Qarun, Egypt. WJFMS 1(1), 29-39.
Fırat O., Cogun H.Y., Yüzereroğlu T.A., Gök G., Fırat O., Kargin F., Kötemen Y., 2011. A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem. 37, 657-666.
Ozok N., Oğuz A.R., Kankaya E., Çilingir Yeltekin A., 2018. Hemato-biochemical responses of Van fish (Alburnus tarichi Guldenstadt, 1814) during sublethal exposure to cypermethrin. Hum Ecol Risk Assess. 24(8), 2240-2246.
Arulraj J.S., Pandurengan P., Arasan S., Gopalrajan S., Paulraj J., 2019. Acute toxicity of lamda-cyhalothrin and the histopathological changes of gill and liver tissues of tilapia (Oreochromis niloticus). J Coast Res. 86, 235-238.
Sharma R., Jindal R., 2020. Assessment of cypermethrin induced hepatic toxicity in Catla catla: A multiple biomarker approach. Environ Res.184, 109359.
Ghelichpour M., Mirghaed A.T., Hoseini S.M., Jimenez A.P., 2020. Plasma antioxidant and hepatic enzymes activity, thyroid hormones alterations and health status of liver tissue in common carp (Cyprinus carpio) exposed to lufenuron. Aquaculture. 516, 734634
Bergmeryer H.U., Horder M., Rej R., 1986a. Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 3. IFCC method for alanine aminotransferase (L-alanine: 2-oxoglutarate aminotransferase, EC 2.6.1.2). J Clin Chem Clin Biochem. 24(7), 481-495.
Bergmeryer H.U., Horder M., Rej R., 1986b. Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxogllutarate aminotransferase, EC 2.6.1.1). J Clin Chem Clin Biochem. 24(7), 497-510.
Tietz N.W., Rinker A.D., 1983. Analysis of liver enzymes. J Clin Chem Clin Biochem. 21, 731.
Jendrassik L., Grof P., 1938. Colorimetric method of determination of bilirubin. Biochem Z. 297, 81-82.
Gornall A.G., Bardawill C.S., David M.M., 1949. Determination of serum proteins by means of the reaction biuret. J Biol Chem. 177, 751-766.
Sudova E.K., Piackova V., Kroupova H., Pijacek M., Svobodov Z., 2009. The effect of praziquantel applied per os on selected haematological and biochemical indices in common carp (Cyprinus carpio L.). Fish Physiol Biochem. 35, 599-605.
McGill M.R., 2016. The past and present of serum aminotransferases and the future of liver injury biomarkers. Excli J. 15, 817-828.
Jee J.H., Masroor F., Kang J.C., 2005. Responses of cypermethrin-induces stress in haematological papameters of Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquac Res. 36, 898-905.
El-Sayed Y., Saad T.T., El-Bahr S.M., 2007. Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Phar. 24(3), 212-217.
Loteste A., Scagnetti J., Simoniello M.F., Campana M., Parma M.J., 2013. Hepatic enzymes activity in the fish Prochilodus lineatus (Valenciennes, 1836) after sublethal cypermethrin exposure. B. Environ. Contam. Tox. 90(5), 601-604.
Velisek J., Dobsikova R., Svobodova Z., Modra H., Luskova V., 2006a. Effect of deltamethrin on the biochemical profile of common carp (Cyprinus carpio L.). B. Environ. Contam. Tox. 76, 992-998.
Velisek J., Wlasow T., Gomulka P., Svobodova Z., Dobsikova R., Novotny L., Dudzik M., 2006b. Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). Vet Med. 51(10), 469-476.
Velisek J., Svobodova Z., Piackova V., 2009. Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorhynchus mykiss). Vet Med. 54(3), 131-137.
Kumar A., Sharma B., Pandey R.S., 2012. Alterations in nitrogen metabolism in freshwater fishes, Channa punctatus and Clarias batrachus, exposed to a commercial-grade 𝜆-cyhalothrin, REEVA-5. Int J Exp Pathol. 93(1), 34-45.
El-Sayed Y., Saad T.T., 2008. Subacute intoxication of a deltamethrin-based preparation (Butox ® 5% EC) in monosex Nile tilapia, Oreochromis niloticus L. Basic Clin Pharmacol. 102(3), 293-299.
Burtis C.A., Ashwood E.R. Tietz Fundamentals of Clinical Chemistry. Saunders: Philadelphia, 1996.
Mommsen T.P., Walsh P.K., 1992. Biochemical and environmental perspectives on nitrogen metabolism in fishes. Experientia. 48, 583-593.
Susan T.A., Veeraiah K., Tilak K.S., 1999. Biochemical and enzymatic changes in the tissues of Catla catla exposed to the pyrethroid fenvalerate. J Ecotox Environ Monit. 11(2), 109-116.
Begum A.A., Ramesh M., Noortheen A., Sampth H., Revathy B., 2003. Responses of Cyprinus carpio var. communis to cyhalathrin, a pyrethroid insecticide. J Indian Fish Assoc. 30, 53-60.
Dobsikova R., Velisek J., Wlasow T., Gomulka P., Svobodova Z., Novotny L., 2006. Effects of cypermethrin on some haematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.). Neuro Endocrinol Lett. 27(2), 91-95.
Sancho E., Ferrando M.D., Andreu-Moliner E., 1997. Sublethal effects of an organophosphate insecticide on the European eel, Anguilla anguilla. Ecotox Environ Safe. 36, 7-65.
Gulsoy N., 2011. Histopathological alterations of permethrin in liver and intestine of Xiphophorus helleri (Pisces: Poecilidae). Fresen Environ Bull. 20(4A), 994-1000.